Les Cahiers de L'AUDITION

REVUE D'INFORMATIONS TECHNIQUES ET SCIENTIFIQUES - VOL. 21 - SEPT/OCT. 2008 - N°5 - ISSN 0980-3482

2^{ÈME} PARTIE :

LA SONIE DES SONS **IMPULSIONNELS**: Modèles Isabelle Boullet

Widex Equipement, l'expertise technique pour bien choisir.

Présence – Ecoute – Conseil

Installation

Expertise Informatique

Chaines de mesure Audiomètres Impédancemètres Oto-émissions acoustiques PEA et PEA automatiques

Réparation

Etalonnage

Stock

Matériel de prêt

Depuis 1980, Widex fournit, installe et répare une gamme complète d'équipements audiologiques, à la pointe de la technologie pour les professionnels de la santé.

ww.widex.fr - 14/16 rue du Taille Fer - Z.A. Les Pouards - 91160 CHAMPLAN - Tél. 01.69.74.17.40 - contact@widex.fr

PUBLICATION DE LA S.A.R.L. GALATÉE.

Gérant et directeur de la publication : Daniel Chevillard 12ter, Rue de Bondy 93600 Aulnay sous Bois Tél : 01 48 68 19 10 - Fax : 01 48 69 77 66 soniclaire@infonie.fr

RÉDACTEUR EN CHEF REDACTEUR EN CHEF Professeur Paul Avan Faculté de Médecine Laboratoire de Biophysique 28, Place Henri Dunant - BP 38 63001 Clermont Ferrand Cedex Tél. : 04 73 17 81 35 - Fax : 04 73 26 88 18 paul.avan/@u-clermont1.fr

RÉDACTEURS

François Degove francois.degove@wanadoo.fr Arnaud Coez - acoez@noos.fr Assistante : C. Degove 5, avenue Maréchal Joffre 92380 Garches Tél. 01 47 41 00 14

CONCEPTION - RÉALISATION MBQ 32, rue du Temple - 75004 Paris Tél. : 01 42 78 68 21 - Fax : 01 42 78 55 27 stephanie.bertet@mbq.fr

PUBLICITÉ

Christian Renard 50, rue Nationale - BP 116 59027 Lille Cedex Tél. : 03 20 57 85 21 - Fax : 03 20 57 98 41 contact@laborenard.fr

SERVICE ABONNEMENTS Editions Elsevier Masson SAS 62, rue Camille Desmoulins 92442 Issy-les-Moulineaux Cedex Tél. : 01 71 16 55 55 - Fax : 01 71 16 55 88 infos@masson.fr Www.masson.fr/revues/cau

DÉPOT LÉGAL À DATE DE PARUTION Sept./Oct. 2008 - Vol. 21 - N°5 Imprimé par Néo-typo - Besançon

N^oCPPAP 0411 T 87 860 INDEXE DANS : EMBASE / Excerpta Medica

INSTRUCTIONS AUX AUTEURS

Éditorial

Paul AVAN

2

5

6

47

DOSSIER

Deuxième partie

La sonie des sons impulsionnels : modèles Isabelle BOULLET

Un estimateur de sonie d'impulsion : élaboration et validation Isabelle BOULLET, Fabrice GAGNEUX, Guy RABAU, Sabine MEUNIER et Patrick BOUSSARD

52 **VEILLE TECHNOLOGIQUE**

Oticon

Siemens

Unitron

Les Cahiers de l'Audition - Vol. 21 - n°5 - Septembre/Octobre 2008

Liste des annonceurs

BELTONE • OTICON • PHONAK • SIEMENS • WIDEX ACOUREX

Les Cahiers de l'Audition déclinent toute responsabilité sur les documents qui leur sont confiés, insérés ou non. Les articles sont publiés sous la seule responsabilité de leurs auteurs.

Les Cahiers de l'Audition

Gérant : Daniel CHEVILLARD Publicité : Christian RENARD Conception-Réalisation : MBQ

RÉDACTION

Rédacteur en Chef : Professeur Paul AVAN Rédacteurs : François DEGOVE & Arnaud COEZ

COMITÉ DE RÉDACTION

Audiologie Prothétique : techniques d'appareillage, d'évaluation et de contrôle de l'Adulte et de l'Enfant : Arnaud COEZ Thierry RENGLET

Phonétique appliquée & audiométrie vocale : Frank LEFEVRE

Audiologie Médicale : Professeur Paul DELTENRE Docteur Jean-Louis COLLETTE

Audiologie Expérimentale : Professeur Christian LORENZI Stéphane GARNIER Stéphane GALLEGO

Orthophonie Education et Rééducation de la Parole et du Langage : Annie DUMONT Veille Technologique : Robert FAGGIANO

Veille Informatique : Charles ELCABACHE

Dossiers, Documents, Bibliographie & Communication : Bernard AZEMA Arnaud COEZ François DEGOVE Philippe LURQUIN Benoît VIROLE

COMITÉ ASSOCIÉS

Comité de Lecture : Au titre de la Société Française d'Audiologie : Président : Professeur Bruno FRACHET

Comité O.R.L. Audiophonologie : Responsable : Professeur Alain ROBIER Adjoints : Professeur René DAUMAN Docteur Dominique DECORTE Docteur Olivier DEGUINE Professeur Alain DESAULTY Docteur Jocelyne HELIAS Docteur Jacques LEMAN Docteur Jacques LEMAN Docteur Jean-Claude OLIVIER Docteur Françoise REUILLARD Professeur François VANEECLOO Professeur Christophe VINCENT Au titre de Présidents des Syndicats Professionnels d'audioprothésistes : Benoit Roy Francine BERTHET Frédéric BESVEL Luis GODINHO

Au titre de Membres du Comité Européen des Techniques Audiologiques : Patrick VERHEIDEN Herbert BONSEL Franco GANDOLFO Heiner NORZ

Au titre de Directeurs de l'Enseignement de l'Audioprothèse : Professeur Julien BOURDINIERE Professeur Lionel COLLET Professeur Pascale FRIANT-MICHEL Professeur Alexandre GARCIA Professeur Jean-Luc PUEL Professeur Patrice TRAN BA HUY

Au titre de la Société Française d'Audiologie :

Docteur Martine OHRESSER Professeur Jean-Marie ARAN Bernadette CARBONNIÈRE Docteur Jean-Louis COLLETTE Docteur Marie-José FRAYSSE Professeur Eréa-Noël GARABEDIAN Docteur Bernard MEYER Docteur Sophie TRONCHE

Les Cahiers de l'Audition sont publiés sous l'égide scientifique du Collège National d'Audioprothèse

10, rue Molière 62220 CARVIN Tél.: 03 21 77 91 24 Fax: 03 21 77 86 57 http://www.college-nat-audio.fr/

Président : Eric BIZAGUET Premier Vice-Président : Frank LEFEVRE Deuxième Vice-Président : Christian RENARD

Membres élus du Collège National

d'Audioprothèse : Jean-Claude AUDRY Bernard AZEMA Jean BANCONS Jean-Paul BERAHA Hervé BISCHOFF Geneviève BIZAGUET Daniel CHEVILLARD Arnaud COEZ Christine DAGAIN Ronald DE BOCK François DEGOVE Jacques DEHAUSSY Jean-Pierre DUPRET Thierry GARNIER **Eric HANS** Bernard HUGON Jérôme JILLIOT Stéphane LAURENT Jean MONIER Maryvonne NICOT-MASSIAS Jean OLD Georges PEIX Xavier RENARD

Benoit ROY Claude SANGUY Philippe THIBAUT Jean-François VESSON Frédérique VIGNAULT Alain VINET

Au titre de Membres Correspondants étrangers du Collège National d'Audioprothèse : Roberto CARLE Léon DODELE Philippe ESTOPPEY André GRAFF Bruno LUCARELLI Carlos MARTINEZ OSORIO Juan Martinez SAN JOSE Christoph SCHWOB

2

Oticon • Dual

La perfection du son dans la beauté des formes

Une merveille de l'extérieur... et une découverte à l'intérieur !

L'association parfaite d'un design attrayant et de la meilleure performance

- Conçue pour attirer de nouveaux utilisateurs deux fois plus rapidement que la moyenne du marché
- Une qualité sonore fantastique avec le Spatial Sound et une connectivité sans fil totale
- L'outil parfait pour toucher davantage de nouveaux utilisateurs et d'utilisateurs expérimentés

Pour plus d'informations, contactez votre responsable régional Oticon ou visitez le site Internet : www.oticon.fr

Les malentendants perdent bien plus que leur **audition**

Ils perdent aussi une partie de leur identité. Désormais, la solution est à portée de main : Beltone Identity. Positionné en milieu de gamme, Identity offre les caractéristiques d'un haut de gamme : directivité adaptative à commutation automatique / double anti Larsen en opposition de phase / réducteur de bruit et réducteur de bruit de vent / gains optimisés automatiquement en fonction des ambiances sonores / volume adaptatif / consommation réduite (0,8 mA) / nouveaux contours petits et fins (dont un en pile 312).

Beltone Identity. Reprenez votre vie en main.

www.beltone-hearing.com

Beltone

Éditorial)

Deux adages guident à la fois les auteurs d'articles scientifiques et leurs lecteurs. Le premier est un classique : ce qui se conçoit bien s'énonce clairement. Le deuxième n'existe pas encore mais pourrait faire l'objet d'un large consensus, pour les amateurs de plus en plus nombreux d'Internet: quand on veut avoir une idée simple et claire d'une notion confuse, consulter wikipedia. C'est ce qu'on peut faire pour la notion de sonie. En langue française, on découvre alors que « La sonie ou loudness est une quantification de la perception du bruit chez l'être humain » ce qui est au mieux approximatif, et n'est guère éclairant: quelle quantification ? Sur wikipedia anglais, la sonie devient la qualité d'un son qui est le corrélat psychologique primaire de la notion de force physique (amplitude), plus exact mais guère éclairant, car on apprend ensuite que l'amplitude n'est pas le seul déterminant : l'énoncé initialement clair s'embrouille...

Il nous reste alors deux possibilités : renoncer à comprendre, mais c'est difficile car le recrutement de sonie est l'une des plaintes les plus fréquentes de nos patients (et d'ailleurs wikipedia est là pour nous rappeler que la perception de la sonie est modifiée en cas de surdité neurosensorielle...). Piste de la dernière chance, qui n'est pas pour nous déplaire : lire les Cahiers de l'Audition, et particulièrement le travail d'Isabelle Boullet, formée au sein d'un des plus gros laboratoires d'acoustique français, le LMA de Marseille. I.Boullet nous propose une analyse très fouillée de la sonie et des relations d'isosonie dans le cas des sons non stationnaires: impulsionnels, dit son titre, « naturels » précise-t-elle plus loin. Ce dernier qualificatif constitue une des grandes originalité de son travail. C'est une première approche indispensable, pour commencer à analyser pourquoi les personnes sourdes appareillées tolèrent mal certains sons de la vie quotidienne même si les essais avec des sons simples ont pu leur sembler acceptables. A l'ère du data logging, on peut imaginer qu'il devienne ensuite facile de repérer quels sons sont mal tolérés, et avec les concepts nouveaux introduits par lsabelle Boullet, de commencer à agir sur les paramètres autres que l'intensité qui auraient pu être en cause.

Des études ont déjà été menées, bien sûr, avec des grands noms comme celui de Zwicker ou Brian Moore. Mais l'auteure souligne la grande disparité dans les résultats, et la trop grande variabilité des différentes méthodes utilisées pour mesurer la sonie, jointe à la différence des stimuli étudiés. On ne peut pas échapper à une mise à plat complète et c'est pourquoi l'espoir de certains lecteurs, amateurs d'articles de style wikipedia, en une page maximum, risquent d'être déçus. A notre décharge, dans « ce qui se conçoit bien s'énonce clairement », clairement ne veut pas toujours dire schématiquement... Enfin, un plus à souligner : une démarche de valorisation a été entreprise et menée à bien par les membres de l'équipe d'où est issue Isabelle Boullet, le but n'est donc pas seulement de contribuer à la connaissance académique: si nos lecteurs souhaitent avoir connaissance de retombées concrètes de leur savoir tout nouveau quant à la sonie, les auteurs ne seront probablement pas sourds à leurs demandes !

Paul Avan

DEUXIÈME PARTIE : La sonie des sons impulsionnels : modèles

Les modèles De sonie

La sonie est étudiée depuis de nombreuses années pour les sons stationnaires et plusieurs algorithmes de calcul s'appuyant sur des modèles élaborés du système auditif périphérique en procurent une bonne estimation (Zwicker, 1958 ; Moore et coll., 1997). En revanche, les recherches sont plus rares pour les bruits fortement non stationnaires. Ces derniers ont des propriétés très spécifiques qui ne permettent pas toujours d'utiliser les méthodes développées pour les sons stationnaires.

Pour les sons non stationnaires, deux modèles connus permettent de calculer la sonie en fonction du temps (Zwicker et Fastl, 1999 et Glasberg et Moore, 2002). Ces auteurs préconisent des indices statistiques pour estimer la sonie globale de sons évoluant dans le temps. Ces indicateurs sont selon Zwicker et Fastl (1999) le N4 ou le N5 (sonie dépassée 4 ou 5 % du temps) et selon Glasberg et Moore (2002), le STLmax ou le LTLmax (maximum de la sonie à court terme et maximum de la sonie à long terme).

En ce qui concerne les bruits impulsionnels, les modèles sont quasi inexistants. Cependant, en 1995 Blommer et ses collaborateurs ont développé une procédure de calcul de la sonie, basée sur celle de Zwicker, pour des bruits impulsionnels particuliers (fermeture de portière, fermeture centralisée de voiture). Deux tests psychoacoustiques ont été mis en place pour valider cette procédure. Un seul des deux tests (méthode de Levitt/Jestead) a confirmé les prédictions faites par cet estimateur. Ce modèle ne sera donc pas développé dans ce chapitre. Une étude de la sonie sur une plus grande sorte de bruits impulsionnels mérite alors d'être entamée.

Nous allons, dans ce chapitre, décrire les différents modèles pour estimer la sonie et les comparer sur plusieurs types de sons.

VI-1 Description des modèles de sonie

VI-1.1 Sonie des sons stationnaires

A l'heure actuelle, deux méthodes -celle de Zwicker (1958) et de Moore et coll. (1997)-, permettent le calcul de la sonie de sons stationnaires. C'est la méthode de Zwicker qui est utilisée le plus souvent car elle a fait l'objet d'une norme (ISO532 B).

Le principe de base du modèle de Zwicker est le calcul de l'excitation de la membrane basilaire par bandes critiques, en prenant en compte diverses pondérations modélisant les filtrages de l'oreille externe et de l'oreille moyenne, le calcul du masquage fréquentiel et l'intégration de la sonie spécifique sur les vingt-quatre bandes critiques. Le principe du modèle de Moore et coll. (1997) est le même que celui de Zwicker (1958) à trois différences près qui sont le mode de calcul des filtres, les corrections de champ et le mode de calcul de l'excitation.

La figure VI-1 représente les principales étapes dans le calcul de la sonie pour les deux modèles. Nous allons détailler dans ce qui suit les principes de chacun des modèles.

Isabelle BOULLET

Mémoire préparé à partir de la thèse de doctorat de l'Université de la Méditerrannée Aix-Marseille II

Soutenue le 17 juin 2005 devant la commission d'examen composée de :

> Michel BERENGIER (LCPC, Nantes) - Président

Patrick BOUSSARD (GENESIS, Aix en Provence)

> Georges CANEVET (LMA, Marseille) -Directeur de thèse

Sabine MEUNIER (LMA, Marseille) -Co-directrice de thèse

Etienne PARIZET (INSA, Lyon) -Rapporteur

Patrick SUSINI (IRCAM, Paris)

Reinhard WEBER (Université d'Oldenburg, Allemagne) - Rapporteur

a) Corrections de champ : transmission de l'oreille externe et de l'oreille moyenne

Les deux modèles de sonie prennent en compte la fonction de transfert de l'oreille externe et de l'oreille moyenne en introduisant des facteurs de correction.

Zwicker introduit un facteur de transmission, exprimé en dB à la figure VI-2, qui est à soustraire au niveau du signal enregistré. Ce facteur dépend de la fréquence. Au-dessus de 1000 Hz, la fonction de transfert a la forme de la courbe de seuil absolu mais inversée. En dessous de 1000 Hz, Zwicker suppose que la transmission du champ libre à l'oreille interne est uniforme et de gain 1. Il suppose aussi que l'augmentation du seuil pour les basses fréquences est uniquement due au bruit interne de l'oreille.

Moore et coll. (1997), quant à eux, n'associent pas l'augmentation du seuil en basse fréquence au seul bruit interne. En effet, des données physiologiques (mentionnées dans Moore et coll., 1997), laissent penser que d'autres phénomènes, en plus du bruit interne, peuvent expliquer l'augmentation du seuil en basse fréquence. Ils utilisent dans leur modèle une correction dite ELC (Equal Level Contour). Elle est basée sur deux hypothèses : 1) Au-dessus de 1000 Hz, l'oreille interne a la même sensibilité à toutes les fréquences. Ainsi, la variation du seuil absolu avec la fréquence n'est due qu'au filtrage de l'oreille externe et moyenne. Le facteur de transmission varie donc avec la fréquence de manière inverse au seuil absolu. La correction correspondante, appelée MAF (Minimum Audible Field), est la même que celle utilisée par Zwicker ; 2) Au-dessous de 1000 Hz, comme nous l'avons déjà écrit, le bruit interne ne peut pas à lui seul rendre compte de la courbe de seuil. La fonction de transfert est alors modélisée par une fonction dont la forme est celle de la ligne isosonique à 100 phones mais inversée. La correction totale est appelée ELC (figure VI-3).

b) Modélisation et calcul des filtres auditifs

La sonie est liée à la répartition de l'excitation, provoquée par un stimulus, le long de la membrane basilaire (Zwicker, 1958). Par conséquent, on représente le fonctionnement de l'oreille ou plus précisément de la membrane basilaire, comme celui d'un banc de filtres. Ces filtres « physiologiques » sont modélisés selon Zwicker par des bandes critiques ; ce sont des bandes spectrales adjacentes dont l'unité est le bark. La largeur des bandes critiques est constante (100 Hz) en dessous de 500 Hz. Au-dessus

Numéro de la bande	Fréquence centrale en Hz	Largeur de la bande critique en Hz	Fréquence de coupure supérieure en Hz
I	50	80	100
2	150	100	200
3	250	100	300
4	350	100	400
5	450	110	510
6	570	120	630
7	700	140	770
8	840	150	920
9	1000	160	1080
10	1170	190	1270
	1370	210	1480
12	1600	240	1720
13	1850	280	2000
14	2150	320	2320
15	2500	380	2700
16	2900	450	3150
17	3400	550	3700
18	4000	700	4400
19	4800	900	5300
20	5800	1100	6400
21	7000	1300	7700
22	8500	1800	9500
23	10500	2500	12000
24	13500	3500	15500

Tableau VI-1 : Tableau définissant les 24 bandes critiques selon Zwicker (Zwicker et Feldtkeller (1981), p. 71). Pour chaque bande sont recensées la fréquence centrale (Hz), la largeur de la bande critique (Hz) et la fréquence de coupure supérieure (Hz).

Les Cahiers de l'Audition - Vol. 21 - n°5 - Septembre/Octobre 2008

de 500 Hz, cette largeur augmente avec la fréquence (voir tableau VI-I et figure VI-4).

Moore et coll. (1997) proposent une autre représentation de la faculté de filtrage du système auditif, proche des bandes critiques. La notion d'ERB (Equivalent Rectangular Bandwidth) remplace alors la notion de bande critique. Les largeurs de ces bandes sont indiquées sur la figure VI-4

c) Calcul de l'excitation

Le diagramme d'excitation induit par un son est calculé à partir du niveau de ce son dans chaque filtre (bande critique ou ERB) après avoir tenu compte des facteurs de transmission à travers l'oreille externe et l'oreille moyenne. L'amplitude de sortie de chaque filtre correspondant à un son donné, appelée diagramme d'excitation, est tracée en fonction des fréquences centrales des filtres. Le calcul du diagramme d'excitation est une partie importante des modèles de sonie et diffère selon la méthode utilisée (Zwicker ou Moore).

Selon Zwicker, le diagramme d'excitation reflète le diagramme de masquage d'un son pur masqué par un bruit à spectre étroit. Zwicker suppose en effet que les diagrammes d'excitation ont la même forme que les courbes de seuils de détection masquée. Les courbes de masquage traduisent la sélectivité de l'oreille et dépendent de la fréquence centrale et du niveau du signal d'entrée (figure VI-5).

Selon Moore, le diagramme d'excitation est calculé à partir de la sortie des filtres auditifs centrés sur les fréquences composant le son. Prenons, par exemple, un son pur excitant à 1 kHz. Le diagramme supérieur de la figure VI-6 montre les courbes de réponse de filtres centrés dans le voisinage de l kHz. Le trait vertical en pointillé représente la fréquence du son pur excitant. Sur le diagramme inférieur, les abscisses correspondent aux fréquences centrales des filtres voisins (cf. diagramme supérieur), et les ordonnées représentent la réponse à 1 kHz de ces filtres. Le diagramme d'excitation est ainsi constitué par la ligne qui joint les points, pour chaque fré-

Figure VI-5 : A gauche : courbes de masquage par des bandes de bruit à quatre fréquences centrales différentes (250 Hz, 1 kHz, 1,1 kHz et 4 kHz). Les courbes correspondent aux seuils de détection mesurés en présence de ces bandes de bruits (de largeur spectrale égale à une bande critique) émises à un niveau de pression de 60 dB ;

A droite : diagramme d'excitation produit par un bruit centré sur 1 kHz et de 160 Hz de largeur spectrale. Le niveau de pression de la bande de bruit est noté Lg et vaut successivement 20, 40, 60, 80 et 100 dB (Zwicker et Feldtkeller, 1981).

quence centrale des filtres voisins.

Pour un son complexe, le diagramme d'excitation est obtenu en répétant l'opération décrite ci-dessus pour toutes les fréquences du signal. Le diagramme d'excitation final est la somme des excitations partielles.

d) Calcul de la densité de sonie et de la sonie totale

Zwicker et Moore calculent la densité de sonie (N'), ou sonie spécifique, à partir du

Figure VI-7 : Courbe de densité de sonie, en fonction de la tonie en barks, d'un son pur de 60 dB à 1 kHz. La courbe en traits-tirets représente l'approximation du modèle, décomposée en une partie rectangle (sonie de cœur) et une partie courbe décroissante (sonie de flanc), utilisée pour le calcul de la sonie globale (Zwicker et Feldtkeller, 1981).

diagramme d'excitation (E) dans chaque bande de fréquence.

Selon la loi de Stevens, la relation entre l'excitation et la densité de sonie est une fonction puissance (relation VI-I) :

$N' = c. E^{\alpha} (VI-I)$

où c est une constante déterminée par ajustements successifs à partir de données expérimentales. L'exposant α , inférieur à l, permet de tenir compte de la relation non linéaire et compressive entre le niveau d'excitation et la densité de sonie.

Zwicker calcule la densité de sonie à partir du diagramme d'excitation. Dans chaque bande critique est calculé le niveau d'excitation, noté excitation de cœur. L'allure du flanc supérieur est globalement conservée et dépend du niveau et de la bande critique. L'allure du flanc inférieur sera transformée en une verticale de façon à ce que l'aire des courbes reste la même. Le calcul de la densité de sonie est donc décomposé en un calcul, à partir du niveau d'excitation de cœur, de la sonie de cœur et de la sonie de flanc (figure VI-7).

La sonie de cœur est calculée à partir de l'équation ci-dessous, tirée de Zwicker et Fastl (1999) :

N' = c.
$$(E_{Thq})^{\alpha}$$
 .[(0,5 + 0,5 . (Estimulus)/
(E_{Thq}))^{\alpha} - 1] (VI-2)

L'exposant α (égal à 0,23) est celui de la droite correspondant à la fonction de sonie d'un bruit uniformément excitant (courbe du haut en tirets-points de la figure VI-8). Estimulus est l'excitation produite par le stimulus et E_{Thq} , donnée par Zwicker, est l'excitation au seuil dans le silence, produite par un bruit interne physiologique.

Le calcul de la sonie de flanc par Zwicker est plus laborieux, car il n'existe pas de relation mathématique pour les courbes de seuils masqués. Les courbes des sonies de flanc des diagrammes patrons (figure VI-9), utilisés autrefois, ont été approximées pour les programmes de calcul par des lignes brisées (figure VI-10).

Les segments de droite de la ligne brisée sont délimités par des lignes horizontales. Ces lignes horizontales correspondent à différents échelons de densité de sonie dépendant du niveau d'excitation. En effet, plus le niveau d'excitation est élevé, et donc la densité de sonie, plus la pente du premier segment de la ligne brisée est raide.

La densité de sonie est alors la succession dans chaque bande critique des sonies de cœur et/ou des sonies de flanc. En effet, si la sonie de cœur d'une bande critique n se situe au-dessous de la sonie de flanc de la bande critique précédente n-1, alors la sonie de cœur de la bande critique n est masquée. Ce sera alors la sonie de flanc de la bande critique précédente n-1 qui sera prise en compte pour déterminer la densité de sonie dans la bande critique n (voir figure VI-9).

Pour calculer la sonie totale, la densité de sonie est alors intégrée sur les 24 bandes critiques (sommation de sonie) : c'est l'aire représentée sous la ligne en trait plein épais de la figure VI-9.

Le principe de calcul de la densité de sonie est légèrement différent de celui de Zwicker. En effet, Moore ne décompose pas

la densité de sonie en sonie de cœur et sonie de flanc. La densité de sonie est calculée à partir du diagramme d'excitation (voir figure VI-6).

Moore et coll. (1997) supposent aussi que le bruit de fond auditif est inaudible. Ils modélisent ce phénomène en soustrayant la densité de sonie produite par le bruit interne à la densité de sonie du stimulus (relation VI-3) :

$$\begin{split} \textbf{N}' &= \textbf{N}' \textbf{Stimulus} - \textbf{N}' \textbf{BruitInterne} = \textbf{C}.(\textbf{E}\textbf{Stimulus})^{\alpha} - \textbf{C}.(\textbf{E}^{Thq})^{\alpha} \\ \textbf{N}' &= \textbf{C}. \left[(\textbf{E}\textbf{Stimulus})^{\alpha} - (\textbf{E}\textbf{Thq})^{\alpha} \right] (VI-3) \end{split}$$

Dans le cas où l'excitation Estimulus produite par le stimulus serait plus faible que l'exci-

tation au seuil, la densité de sonie, ne pouvant être négative, est supposée nulle. La sonie totale est aussi calculée comme la somme des sonies spécifiques.

VI-1.2- Sonie des sons non stationnaires

Zwicker et Fastl (1999) ont travaillé à l'élaboration d'un modèle de calcul de la sonie de sons non stationnaires. Le principe de base de ce modèle est le même que pour les sons stationnaires, mais on tient compte du masquage temporel et la sonie est calculée en fonction du temps. En effet un signal peut être masqué (ou difficile à détecter) s'il est précédé de près dans le temps par un autre signal (masquage postérieur). Un signal peut aussi être masqué par un son qui le suit de près dans le temps (masquage antérieur ou rétroactif), cependant Zwicker n'en tient pas compte dans son modèle.

Zwicker utilise un quadripôle (figure VI-11) pour modéliser le masquage temporel postérieur en fonction de l'intensité du signal et de sa durée. En effet, selon la durée du signal, le masquage s'étendra sur une portion plus ou moins longue après la fin du signal. Le masquage temporel est modélisé par une décharge de condensateurs.

Les charges et décharges des condensateurs dépendent des tensions d'entrée et de sortie. Supposons que la tension du signal d'entrée soit un créneau. C1 est chargé instantanément et C2 se charge avec une constante de temps T_2 = R_2 * C_2 égale à 20 ms. C_2 est considéré comme chargé après une durée comprise entre $3*T_2$ =60 ms (condensateur chargé à 95%) et $5*T_2$ =100 ms (condensateur chargé à 99%).

Lorsque le signal est interrompu, les condensateurs se déchargent selon deux cas :

I) Le signal d'entrée dure moins de 100 ms : Le condensateur C₂ n'a pas eu le temps de se charger complètement. C₁ se décharge alors dans R₁ et charge C₂ par R₂.

2) Le signal d'entrée dure plus de 100 ms : Les condensateurs C_1 et C_2 sont complètement chargés, le système est en équilibre. C_1 et C_2 se déchargent alors dans R_1 . La décharge, se faisant avec une constante de temps égale à $R_1(C_1+C_2)$, est plus lente que dans le cas (1).

Par exemple, sur la figure VI-12, on peut observer le masquage temporel occasionné par des créneaux de sons purs de 5 kHz et de durée 10 ms et 100 ms. Le modèle de Zwicker décrit ci-dessus, permet de calculer la sonie en fonction du temps (figure VI-12 (c)), par contre on ne sait pas comment les auditeurs jugent la sonie globale de sons variant dans le temps. Zwicker et Fastl (1999) préconisent le calcul des indices statistiques N10, N5 ou N4 (sonie dépassée 10, 5 ou 4% du temps) pour estimer la

Figure VI-10 : Exemple de ligne brisée utilisée pour approximer la sonie de flanc induite par une bande située à 2 kHz ayant une sonie de cœur de 7,5 sones/Bark.

11

Figure VI-11 : Circuit RC du quadripôle servant à modéliser le masquage temporel postérieur. R1=35k Ω ; C1=0,7 μ F ; R2= 20 k Ω ; C2=1 μ F (Zwicker, 1984).

Figure VI-12 : Etablissement de la sonie de créneaux à 5 kHz de 100 ms (trait plein) et 10 ms (pointillés). (a) Enveloppe temporelle des deux créneaux, (b) Densité de sonie correspondant aux deux créneaux dans la bande de bark 19, (c) Sonie en fonction du temps (Zwicker et Fastl 1999).

sonie globale d'un son non stationnaire.

Glasberg et Moore (2002) ont aussi développé un modèle de sonie pour des sons variant dans le temps. De la même manière que les modèles précédents, ce modèle s'affranchit de la transmission à travers l'oreille externe et l'oreille moyenne, mais cette fois en utilisant un filtre à réponse impulsionnelle finie (FIR). La fonction de transfert du filtre (FIR) simulant la transmission du champ libre à l'oreille interne est donnée sur la figure VI-13.

La cochlée est censée fonctionner comme un banc de filtres passe-bande dont les fréquences centrales sont étalées de 50 à 15000 Hz. La largeur des filtres augmente avec leurs fréquences centrales. Par exemple, pour un filtre centré sur 100 Hz, la largeur de bande rectangulaire équivalente (ERB) est de 35 Hz. Pour une fréquence centrale de 10 kHz, la largeur de bande rectangulaire est de 1100Hz.

La forme des filtres dépend du niveau. En effet, les pentes des filtres à basse fréquence deviennent moins raides guand le niveau augmente. La courbe donnant l'amplitude de sortie de chaque filtre, pour un son donné, est censée modéliser le diagramme d'excitation. La méthode utilisée par Moore pour calculer le diagramme d'excitation est basée sur une analyse spectrale. Pour obtenir une résolution à basse fréquence comparable à celle du système auditif, l'analyse se fait sur des segments relativement longs (64 ms). Cependant pour les hautes fréquences les fenêtres d'analyse seront plus courtes (2 ms). Ainsi, 6 FFT sont effectuées en parallèle dont les durées sont 64, 32, 16, 8, 4, et 2 ms pour des intervalles de fréquences qui sont respectivement 20-80 Hz, 80-500 Hz, 500-1250 Hz, 1250-2540 Hz, 2540-4050 Hz et 4050-15000 Hz. Le diagramme d'excitation est calculé à partir du spectre toutes les 1 ms, il y a donc recouvrement.

L'étape suivante du modèle est de calculer ce que Glasberg et Moore (2002) appellent la sonie « instantanée ». Les auteurs supposent que la sonie instantanée n'est pas quelque chose de conscient dans la perception.

Figure VI-13 : Fonction de transfert du filtre numérique à réponse impulsionnelle finie utilisée pour simuler les effets de l'oreille externe et de l'oreille moyenne. Le gain est calé pour être de 0 dB à 1000 Hz (Glasberg et Moore, 2002).

Elle correspondrait à l'activité totale dans le nerf auditif mesurée sur un intervalle de temps très court, de l'ordre de la milliseconde. Le calcul de la sonie instantanée se fait à partir du diagramme d'excitation, de la même manière que dans le modèle stationnaire (Moore et coll., 1997). Le diagramme d'excitation est transformé en sonie spécifique et l'aire sous le diagramme de sonie donne la sonie instantanée. Ce calcul vaut pour une écoute monaurale. Pour une écoute binaurale, la sonie instantanée est sommée sur les 2 voies pour donner la sonie instantanée globale.

Glasberg et Moore (2002) calculent ensuite la sonie à court terme à partir de la sonie instantanée. La sonie instantanée est lissée, par un filtrage passe-bas, pour tenir compte de l'intégration temporelle (la constante de temps n'est pas donnée par l'auteur mais elle semble être de l'ordre de 100 ms, voir paragraphe VIII-2) et du masquage temporel (décroissance de la sonie après la fin du stimulus). La sonie à court terme représente la sonie perçue à chaque instant. Les auteurs préconisent de prendre le maximum de la sonie à court terme comme valeur de la sonie globale d'un son court.

A partir de la sonie à court terme, la sonie à long terme peut être calculée en utilisant aussi une sorte d'intégration temporelle. La sonie à long terme traduirait le fait que la sonie globale d'un son est gardée en mémoire après la fin de ce dernier pendant quelques secondes et en l'absence de nouveau stimulus.

Après une description des différents modèles de sonie nous allons les tester sur différents types de sons.

VI-2 Comparaison des modèles de sonie sur des sons de l'environnement

Le but de ce paragraphe n'est pas de faire une comparaison précise des domaines d'application de tous les modèles de sonie. En effet, ce travail fera l'objet du chapitre VIII. Nous allons uniquement ici comparer les résultats des principaux modèles de sonie aux mesures de la sonie par des auditeurs sur des sons stationnaires, non stationnaires et impulsionnels de l'environnement pour définir leurs limites.

VI-2.1 Sons stationnaires

Nous avons, dans un premier temps, comparé les deux modèles de sonie (Moore et coll., 1997 et ISO532B) pour des sons stationnaires de l'environnement. Les données des niveaux d'isosonie mesurés ont été obtenues lors d'une étude réalisée en 1998

au CNRS-LMA (Voir tableau VI-2) que je décris brièvement ci-dessous. Les sons, dans le tableau VI-2, sont classés par ordre croissant du niveau d'isosonie mesuré.

Les enregistrements des bruits ont été faits à l'aide d'un microphone omnidirectionnel Bruel&Kjaer, un préamplificateur Bruel&Kjaer (Nexus) et un DAT (Tascam) sur une seule voie. Le microphone était positionné à la hauteur de la source à une distance de I mètre environ. La restitution était effectuée par une enceinte Genelec (type 1013A) dans la salle anéchoïque du laboratoire. Les sons étaient filtrés par la réponse inverse du haut-parleur par un filtre FIR pour une restitution plus fidèle à la réalité. La conversion numérique/analogique était faite par une carte Oros. Le système de restitution était étalonné à l'aide d'un son pur à l kHz de 94 dB SPL.

La mesure de la sonie a été réalisée par vingt-quatre auditeurs par une méthode d'ajustement. Tous les sons avaient une durée de I seconde. Le son de comparaison était un son pur de I kHz. Les niveaux d'isosonie mesurés sont représentés sur la figure VI-I4 en abscisses.

Le niveau d'isosonie a ensuite été calculé par les modèles de Zwicker (carrés sur la figure VI-14) et de Moore (triangles sur la figure VI-14). Le niveau d'isosonie calculé est comparé aux niveaux d'isosonie mesurés. Nous avons représenté la dispersion des données expérimentales par des segments non pas horizontaux mais verticaux afin de comparer plus facilement les niveaux d'isosonie calculés et mesurés. La ligne en trait plein est une droite « idéale », correspondant à l'égalité des niveaux d'isosonie calculés et mesurés.

Le modèle de Zwicker (1958) fournit des niveaux d'isosonie à moins de 4 phones des valeurs mesurées, à l'exception de quatre sons (2, 10, 21, 22). Les spectres de ces quatre sons présentent des caractéristiques différentes. Le son 2 (chalumeau) a un large spectre dont l'énergie est plus

Description	N° son	Niveau d'isosonie mesuré en phones	Ecart type en phones	Niveau d'isosonie calculé (Zwicker 1958)	Niveau d'isosonie calculé (Moore 1997)
papier froissé	9	48,2	7,5	46,4	53,3
disque dur externe	15	51,5	6, I	47,9	53,3
moteur au ralenti, voiture	21	59,1	4,7	53	57,9
moto au ralenti	28	59,3	6,2	58	63,7
voyelle U tenue par une femme	22	62,1	4,0	53,1	54,6
perceuse	31	62,1	5,6	63,95	69,5
note de flûte	4	63,7	3,4	61,7	66,2
voyelle A tenue par un homme	23	66,7	6,8	62,8	67
vélo en roue libre	19	69,4	5,1	69,7	75,3
téléphone	17	71,0	5,5	74,2	79,5
harmonica synthé	7	72,3	4,3	75,9	80, I
moteur au ralenti, moto	29	73,3	6,4	74,3	79,2
téléphone	16	73,4	6,8	76,8	81,6
perceuse	32	74,9	5,1	78,6	83,1
guitare synthé	5	77,1	5,6	79,1	83,3
flûte	25	77,1	3,7	76,3	80
chalumeau	2	77,4	5,3	81,95	85,9
vélo en roue libre	20	78,0	5,7	79,35	83,8
moteur au ralenti, moto	8	86,1	4,6	88,4	91
flûte	26	86,3	4,8	89	90,9
perceuse	10	87,5	4,7	92,2	94, I

13 _

14

Figure VI-14 : Comparaison de modèles de sonie sur des mesures de sons stationnaires de l'environnement. Les numéros correspondent aux sons décrits dans le tableau VI-2. En ordonnée, sont portés les niveaux d'isosonie calculés par deux modèles de sonie : Zwicker 1958 (carrés) et Moore 1997 (triangles) et le niveau d'isosonie mesuré (ronds pleins) avec l'écart type (segments verticaux). Les niveaux d'isosonie mesurés par les auditeurs sont en abscisse. Le trait plein correspond à la diagonale, c'est-à-dire au niveau d'isosonie que devrait calculer le modèle pour prédire correctement le niveau d'isosonie mesuré.

concentrée autour de 1.8 et 5 kHz. Le son 10 (perceuse) est un bruit très large bande dont l'énergie est répartie entre l et 12 kHz. Le son 21 (moteur de voiture au ralenti) a aussi un large spectre mais l'énergie se répartit autour de 240 Hz. Le son 22 (voyelle U tenue par une femme) est composé d'harmoniques dont la fréquence fondamentale se situe autour de 230 Hz. Il est difficile de trouver une caractéristique commune à ces quatre sons qui pourrait expliquer pourquoi le modèle de Zwicker (1958) ne calcule pas précisément le niveau d'isosonie de ces sons. De plus, le son 21 (moteur de voiture) présente les mêmes caractéristiques spectrales que le son 29 (moteur de moto au ralenti) dont le niveau d'isosonie est correctement calculé. Le seul paramètre qui change est leur niveau.

Globalement, le modèle de Zwicker (1958) donne des niveaux d'isosonie proches de ceux mesurés. Le modèle de Moore et coll. (1997) donne des résultats éloignés de la droite « idéale » à forts niveaux. Il donne des écarts de plus de 4 phones par rapport au niveau d'isosonie mesuré. Cependant, pour les sons 21 et 23 (ralenti de voiture et voyelle A tenue par un homme) le modèle de Moore et coll. (1997) donne des niveaux d'isosonie proches de ceux mesurés. Ces sons correspondent à des sons dont le spectre se situe dans les basses fréquences (entre 100 et 500 Hz), mais il est aussi difficile de conclure sur une limite du modèle de Moore et coll. (1997) par rapport au spectre des signaux. Par contre, on observe aussi une surestimation du modèle pour des niveaux d'isosonie supérieurs à 70 phones.

Les modèles de Zwicker (1958) et de Moore et coll. (1997) estiment assez bien les niveaux d'isosonie de sons stationnaires. Cependant, on a pu constater que la précision des modèles semble dépendre du niveau. En particulier, le modèle de Moore surestime le niveau d'isosonie lorsque ceux-ci dépassent 70 phones.

Après cette comparaison rapide des deux modèles de sonie pour les sons stationnaires nous allons tester les modèles de Zwicker et Fastl (1999) et de Galsberg et Moore (2002) pour les sons non stationnaires.

VI-2.2 Sons non stationnaires et impulsionnels de l'environnement (bruits de chantier)

Les modèles de sonie pour des sons de niveau variable dans le temps ont été testés sur des bruits de chantier dont le niveau d'isosonie a été mesuré par trente auditeurs avec une méthode d'égalisation lors d'une étude que nous avons réalisée pour le ministère de l'environnement, financée par l'ADEME. Avant de tester les modèles sur ces bruits, nous allons décrire l'enregistrement et le traitement des signaux ainsi que la mesure des niveaux d'isosonie.

VI-2.2.1 Enregistrements des bruits de chantier

Nous nous sommes intéressés aux bruits transmis à l'intérieur d'une habitation à proximité d'un chantier. La différence de niveau entre l'extérieur et l'intérieur de l'habitation, à I mètre de la fenêtre, que nous avons mesurée au sonomètre Bruel & Kjaer était de 30 dB(A).

a) Enregistrements de proximité

Pour pouvoir travailler plus précisément sur l'influence des sources individuelles du chantier, nous avons fait un enregistrement à proximité de chacune d'entre elles, avec un microphone omnidirectionnel.

Pour réaliser cela nous avons utilisé le matériel décrit ci-dessous :

- Un microphone omnidirectionnel Schoeps CMC 6 -- U
- Un magnétophone numérique DAT DAPI Tascam
- Un pré-ampli MCN Audio UI 126
- Un pistonphone (calibrator type 423,

B&K) qui donne 94 dB à 1000 Hz

 - Un sonomètre Bruel & Kjaer. Le microphone avait une réponse en fréquence plate de 50 à 16000 Hz. Le microphone, lors de l'enregistrement, était situé en conformité avec la norme internationale ISO 1996/1-1982 (F), c'est-à-dire à 1,4 m au-dessus du sol et à 4 m de toute structure réfléchissante. Les sources étaient en moyenne à 5 m du microphone.

Avant chaque enregistrement, un signal étalon (pistonphone : 1000 Hz, 94 dB) était enregistré avec le microphone omnidirectionnel pour pouvoir restituer ultérieurement les bruits de chantier à leur niveau réel. Vingt-huit bruits de chantier ont été ainsi enregistrés de manière individuelle.

b) Enregistrements en appartement

Le matériel utilisé était le même que celui employé pour les enregistrements de proximité. L'enregistrement a été fait dans une pièce dont la paroi extérieure était face au chantier, à quelques dizaines de mètres de celui-ci, fenêtres fermées, fenêtres entreouvertes et fenêtres ouvertes. Ces trois conditions d'ouverture de la fenêtre nous ont semblé balayer les situations usuelles d'un riverain dans son habitation. Le niveau du bruit de fond résiduel, en l'absence d'événement sonore émergent, était de 35 dB(A).

VI- 2.2.2 Mesure du niveau d'isosonie

a) Stimuli

Les tests psychoacoustiques ont été effectués sur les bruits enregistrés en appartement. Mais nous avons aussi travaillé à partir des enregistrements de proximité en simulant une écoute en appartement. Ces bruits ont alors été traités pour pouvoir simuler cette écoute. Les bruits enregistrés à l'intérieur de l'appartement ont été présentés aux sujets à leur niveau réel. Mais les enregistrements extérieurs, effectués à proximité des sources ont été traités pour simuler, d'une part l'atténuation due à la propagation aérienne sur 30 mètres (distance moyenne entre la source sonore du chantier et la paroi du bâtiment) et, d'autre part, l'atténuation due à l'isolation de l'habitation par rapport aux sources de bruits extérieures. Nous avons ainsi retenu trente sons représentant bien les différentes sources de bruit d'un chantier telles qu'elles seraient perçues par un riverain dans son habitation. Treize bruits sont issus d'enregistrements à l'intérieur de l'appartement et les dix-sept autres sont issus des enregistrement à proximité des sources. Le tableau VI-3 décrit chaque bruit et donne le niveau en dB(A) des bruits utilisés pour des tests psychoacoustiques.

b) Auditeurs

Trente auditeurs ont réalisé les expériences. Douze d'entre eux n'avaient jamais participé à des tests d'écoute auparavant. Tous les sujets ont passé un audiogramme de Békésy pour vérifier qu'ils n'avaient pas de déficience auditive marquée, hormis une légère presbyacousie acceptable et normale avec l'âge pour certains. Les auditeurs étaient âgés de 22 à 61 ans et la moyenne d'âge était de 34 ans.

Nom	Description	Position de la fenêtre	Niveau en dB(A)
chant01	Scie électrique	Fermée	40
chant02	Marteau sur bois	Fermée	52
chant03	Marteau sur fer	Entrouverte	57
chant04	Ferrailles	Entrouverte	53
chant05	Coulage de béton	Ouverte	51
chant06	Scie circulaire	Ouverte	52
chant07	Coups de marteaux	Fermée	48
chant08	Vibreur+ compresseur	Entrouverte	66
chant09	Klaxon grue	Entrouverte	55
chant10	Ambiance chantier	Ouverte	53
chant l l	Marteau-piqueur	Ouverte	52
chant I 2	Marteau-piqueur + marteaux	Ouverte	54
chant I 3	Marteau + fer	Ouverte	57
chant I 4	Camion benne	Isolation simulée	34
chant I 5	Brise roche hydraulique	Isolation simulée	65
chant I 6	Coulage de béton	Isolation simulée	36
chant I 7	Entonnoir en fer	Isolation simulée	36
chant18	Grue	Isolation simulée	34
chant19	Klaxon grue (un seul coup)	Isolation simulée	36
chant20	Marteau sur grillage	Isolation simulée	21
chant21	Marteau sur bois	Isolation simulée	28
chant22	Marteau	Isolation simulée	35
chant23	Marteau sur béton	Isolation simulée	50
chant24	Marteau sur coffrage	Isolation simulée	36
chant25	Avertisseur de recul	Isolation simulée	38
chant26	Scie circulaire	Isolation simulée	43
chant27	Coulage de béton	Isolation simulée	31
chant28	Toupie	Isolation simulée	33
chant29	Tractopelle	Isolation simulée	38
chant30	Vibreur	Isolation simulée	45

Tableau VI-3 : Récapitulatif et descriptif des bruits de chantiers.

15 -

c) Procédure

Nous avons mesuré le niveau d'isosonie par une méthode d'ajustement. Les tests ont été réalisés dans une salle anéchoïque.

Le test consistait à égaliser la sonie d'un bruit de chantier (son test) avec un son de comparaison qui durait une seconde et dont la sonie était, en principe, connue. Le son de comparaison était une bande de bruit centrée sur 1000 Hz et de largeur 120 Hz.

Dans un premier test, l'auditeur entendait successivement le bruit de chantier dont le niveau restait fixe suivi du son de comparaison dont le niveau pouvait être modifié. La tâche de l'auditeur consistait à ajuster le deuxième son (bande de bruit) pour qu'il ait la même sonie que le bruit de chantier. Lorsque les sonies des deux sons étaient jugées égales par le sujet, il validait son estimation et passait au bruit de chantier suivant. Cette opération a eu lieu sur les trente bruits de chantier. Le niveau d'isosonie est le niveau de pression du son de comparaison (bande de bruit).

Dans un deuxième test, le son de comparaison et le son test étaient inversés. C'est-àdire que ce n'était plus la bande de bruit (son de comparaison dans le premier test) qui avait un niveau variable mais le bruit de chantier, qui était alors présenté en second. Le niveau de la bande de bruit était fixé à la valeur ajustée par le sujet lors du premier test. Le niveau d'isosonie est alors égal au niveau de pression de la bande de bruit fixé lors du premier test ajouté à l'écart entre le niveau de pression original du son test et son niveau de pression ajusté pour que les deux sons aient la même sonie. Présenter les sons dans l'autre sens permet de s'affranchir d'un biais consistant à juger le plus souvent le son présenté en second plus fort.

Le niveau d'isosonie final était la moyenne des niveaux ajustés lors des deux tests.

d) Dispositif expérimental

Le signal de sortie de la carte son Oros passait à travers deux portes électroniques Coulbourn dont les temps de montée et de descente étaient de 100 ms. La restitution était effectuée par deux enceintes Genelec (type 1013A) et un caisson de basse (type 1092A) dans la salle anéchoïque du LMA. Les trente bruits étaient présentés dans un ordre aléatoire, différent pour chaque auditeur.

Avant de réaliser le test de mesure de la sonie, le système de restitution était étalonné à l'aide d'un signal de 1000 Hz à 94 dB.

VI-2.2.3 Comparaison des niveaux d'isosonie mesurés et calculés

Dans ce paragraphe sont comparés les résultats du test d'estimation du niveau d'isosonie par la méthode d'ajustement (tableau VI-4) et les résultats obtenus par des modèles de sonie élaborés pour des sons non stationnaires. La deuxième colonne du tableau correspond à la moyenne des estimations du niveau d'isosonie des trente sujets (deux estimations par sujet) pour chacun des 30 bruits de chantier. Les deux modèles testés sont ceux de Zwicker et Fastl (1999) et de Glasberg et Moore (2002).

Le modèle Zwicker et Fastl (1999) permet de calculer la sonie en fonction du temps mais ne permet pas de calculer la sonie globale d'un son. Zwicker préconise, pour estimer le niveau d'isosonie global d'un son variant dans le temps, de calculer le niveau d'isosonie dépassé 4, 5 ou 10% du temps (N4, N5 ou N10). Nous avons choisi de tester la variable N4 sur les bruits de chantier étudiés.

Glasberg et Moore (2002) préconisent de calculer le niveau d'isosonie à court terme maximum (STLmax) pour estimer le niveau d'isosonie global de son court.

Nom	Niveau d'isosonie	Ecart type	Nom	Niveau d'isosonie	Ecart type
	en phones	en phones		en phones	en phones
chant01	57,4	5,5	chant16	57,3	5,9
chant02	66,3	5,2	chant17	61,1	4,9
chant03	70,7	5,7	chant18	58,1	3,9
chant04	65,8	5,5	chant19	58,6	6,8
chant05	66,8	6,2	chant20	47,2	8,7
chant06	65,5	5,3	chant21	56,9	5,3
chant07	61,1	5,3	chant22	59,1	6,1
chant08	74,8	5,7	chant23	67,7	5,1
chant09	67,5	5,6	chant24	59,9	4,8
chant10	69,5	4,9	chant25	55,4	5,8
chant l l	69,4	5,3	chant26	61,7	5,8
chant12	67,8	5,0	chant27	57,1	4,5
chant I 3	70,2	4,9	chant28	55,6	5,1
chant I 4	57,8	5, I	chant29	60,2	4,5
chant15	74,3	6,0	chant30	63,5	5,9

Moyenne écart type = 5,5 phones

Tableau VI-4 : Tableau récapitulatif donnant le niveau d'isosonie mesuré sur trente auditeurs et les écarts types en phones pour les trente bruits de chantier.

Sur la figure VI-15 sont reportés le niveau d'isosonie dépassé 4% du temps (N4) et le maximum du niveau d'isosonie à court terme (STLmax) en fonction des niveaux d'isosonie mesurés (valeurs du tableau VI-4). Nous avons aussi choisi de représenter le niveau d'isosonie mesuré avec la dispersion (segments verticaux) en fonction de lui-même. Cela est représenté par la ligne en trait plein correspondant à une droite « idéale », c'est-à-dire à une droite pour laquelle il y a égalité des niveaux d'isosonie calculés et mesurés.

Les deux indicateurs surestiment les niveaux d'isosonie pour des niveaux élevés et sous-estiment les niveaux d'isosonie pour des sons de niveaux faibles. Cependant, le STLmax, pour des niveaux inférieurs à 60 dB SPL, se situe à l'intérieur des écarts types. On retrouve ainsi les limites des modèles de sonie pour les sons stationnaires. Nous ne rentrons pas ici dans le détail des limites des modèles actuels. L'important était de souligner ici leur insuffisance pour calculer le niveau d'isosonie de n'importe quel type de son.

VI-3 Introduction des indices utilisés pour évaluer les modèles de sonie

Dans les prochains chapitres, plusieurs indices pourront être utilisés afin de pouvoir comparer les différents modèles de sonie. Le premier indice est le MAR (Mean Absolute Residual). Il a été utilisé par Gerken et coll. (1990) pour comparer différentes fonctions mathématiques permettant de mieux caractériser l'intégration temporelle. Le MAR est défini comme la moyenne des valeurs absolues de la différence entre le niveau d'isosonie calculé (L_{calculé}) et le niveau d'isosonie mesuré (L_{mesuré}) :

$$MAR = \frac{\sum_{i=1}^{n} |L_{i} - L_{i} - L_{i} - L_{i} - L_{i}}{n}$$

où n représente le nombre de stimuli testés. Cet indice permet de déterminer si

Figure VI-15 : Comparaison des niveaux d'isosonie calculés par le modèle de Zwicker et Fastl 1999 (N4, losanges) et par le modèle de Glasberg et Moore de 2002 (STLmax, triangles) par rapport aux niveaux d'isosonie mesurés par trente sujets (cercles). Les lignes verticales représentent les écarts types à la moyenne obtenus par la méthode d'ajustement.

l'estimateur donne, en moyenne, de bonnes prédictions du niveau d'isosonie.

Le deuxième indice est le Rmax. C'est le maximum de la valeur absolue des différences entre le niveau d'isosonie calculé ($L_{calcule}$) et le niveau d'isosonie mesuré (L_{mesure}) :

 $Rmax=max(L_{i} calculé - L_{i} mesuré)$

Cet indice permet de déterminer la plus grande erreur effectuée par le modèle ou l'estimateur pour prédire le niveau d'isosonie. Il permet en quelque sorte de tester la robustesse de l'estimateur.

Le troisième indice est noté Rmean. C'est la moyenne des différences entre le niveau d'isosonie calculé ($L_{calculé}$) et le niveau d'isosonie mesuré ($L_{mesuré}$) :

$$Rmean = \frac{\sum_{i=1}^{n} (L_{i calculé} - L_{i mesuré})}{n}$$

Cet indice permet de savoir si les erreurs commises par l'estimateur se répartissent uniformément autour d'une valeur moyenne. Par exemple, si la valeur de Rmean est petite, proche de zéro, alors la répartition des erreurs est uniforme autour de la valeur de la mesure. Par contre, si la valeur du Rmean est grande, positive ou négative, alors la répartition des erreurs est le plus souvent au-dessus (Rmean > 0) ou au-dessous (Rmean < 0) de la valeur de la mesure. Il permet de vérifier que le modèle ou l'estimateur ne possède pas de biais systématique. En effet, si le modèle avait un biais systématique le MAR et le Rmean auraient la même valeur au signe près. 17

Enfin, le dernier indice est le Rstd. C'est l'écart type des différences entre le niveau d'isosonie calculé et le niveau d'isosonie mesuré.

Cet indicateur permet de connaître si l'estimateur comporte un biais systématique. Si le Rstd est nul, il y a effectivement un biais constant. Une fois le biais annulé, l'estimateur doit donc donner des résultats parfaits.

VI-4 Conclusion

Les modèles de sonie actuels estiment assez bien la sonie de sons stationnaires de l'environnement même si le modèle de Moore et coll. (1997) surestime de plus de 4 phones le niveau d'isosonie des sons

testés. Un des points mis en avant dans ce chapitre est la sous-estimation du niveau d'isosonie obtenu par le modèle de Zwicker pour des sons de niveaux faibles et sa surestimation pour des sons de niveaux élevés. Une explication possible de cette divergence serait que ce modèle prend un même exposant de la fonction de sonie quels que soient la fréquence et le niveau.

En ce qui concerne les sons non stationnaires et impulsionnels, nous avons montré que les modèles ne permettent pas d'estimer correctement la sonie globale. Ceci conforte donc notre volonté d'étudier la sonie des sons impulsionnels.

UN ESTIMATEUR DE SONIE POUR LES SONS **IMPULSIONNELS**

Le but de mon travail de thèse est de proposer des outils permettant le calcul de la sonie des sons impulsionnels. Pour cela, il nous faut dans un premier temps, déterminer les caractéristiques physiques de ce type de son. En effet, les sons construits sur la base d'une enveloppe temporelle rectangulaire ne sont pas totalement représentatifs

18

des sons que l'on peut trouver dans notre environnement. Ceux-ci présentent plutôt des enveloppes à décroissance exponentielle sans partie entretenue. Nous nous sommes donc attachés à définir les caractéristiques physiques des sons impulsionnels que nous souhaitions étudier. Dans un deuxième temps, notre objectif est d'établir des corrélations entre ces caractéristiques physiques et la sonie des sons impulsionnels, afin de proposer un estimateur de sonie d'impulsion que l'on notera ESI. Nous utilisons le terme d'estimateur, et non celui de modèle, car le calcul de la sonie ne se base pas ici sur une modélisation du système auditif, mais sur la recherche de paramètres physiques qui influent sur la sonie.

VII-1 Caractéristiques physiques des sons impulsionnels

La première étape de notre étude a été d'enregistrer un panel de sons représentatifs des sons impulsionnels afin d'en déterminer les caractéristiques physiques types. C'est donc avec des percussions, des pierres, des barres de fer, des ballons, des pétards et autres objets que nous avons généré vingt-quatre sons impulsionnels « réels » (voir tableau VII-I).

L'enregistrement des sons a eu lieu en salle anéchoïque avec le matériel suivant :

- Un microphone Bruel & Kjaer type 2669 ;
- Un amplificateur Bruel & Kjaer « Nexus » ;
- Un magnétophone numérique DAT DAPI Tascam.

Le décours temporel de chacun des sons impulsionnels enregistrés peut être caractérisé par une attaque rapide ne dépassant pas 5 ms, pas de palier au maximum d'amplitude et un temps de descente plus ou moins long (voir figure VII-I).

La figure VII-2 montre une façon de modéliser le décours temporel de ce type de signaux impulsionnels. L'attaque est modélisée par une fonction linéaire croissante et la décroissance par une fonction exponentielle décroissante (figure VII-1). L'enveloppe temporelle ainsi définie permet de synthétiser des sons impulsionnels, dont chaque caractéristique sera contrôlée (voit tableau VII-2), pour une meilleure analyse de l'influence de chaque paramètre physique sur la sonie.

Les caractéristiques physiques d'un son impulsionnel que nous pouvons extraire sont, le temps de montée, le niveau crête, le temps de descente et l'énergie (tableaux VII-1 et VII-2).

Nous avons défini le temps de montée par le temps mis pour passer de 10 à 90 % du maximum d'amplitude du signal. Le temps

de descente est le temps mis pour passer de 90 à 10 % du maximum d'amplitude. Cette définition, inspirée de l'électronique, est aussi utilisée par Scharf et Buus (1986) pour définir ces paramètres temporels. Le calcul du temps de montée et du temps de descente est basé sur le calcul de l'enveloppe temporelle du signal.

Il faut noter que la difficulté ici était de faire un choix d'extraction d'enveloppe valable pour n'importe quel type de signaux complexes. Nous n'avons pas utilisé la méthode de la transformée de Hilbert, mieux adaptée pour extraire l'enveloppe de signaux harmoniques. Notons aussi que le but de l'extraction d'enveloppe temporelle était de pouvoir calculer le temps de montée et le temps de descente. La méthode que nous avons choisie pour déterminer l'enveloppe est basée sur le filtrage passe-bas sur le signal redressé. C'est-à-dire que tant que l'amplitude du signal augmente l'enveloppe suit exactement l'évolution temporelle du signal redressé. Lorsque l'amplitude du signal décroît, l'enveloppe décroît de manière exponentielle mais avec une décroissance moins raide que celle du signal (Zölzer, 1997). Cette décroissance est posée de telle manière que l'on respecte un bon compromis entre la durée du signal et l'obtention d'une enveloppe lissée.

Le niveau crête est le niveau en dB SPL de l'échantillon correspondant à la valeur maximale prise par l'amplitude (correspondant à la valeur maximale de la pression instantanée) pendant la durée totale du signal. L'énergie est définie comme l'intégrale, sur toute la durée du signal, de l'amplitude au carré du signal.

VII-2 Estimateur de sonie de sons impulsionnels

Après avoir déterminé les différentes caractéristiques physiques, nous avons mis en place une expérience pour mesurer la sonie de quarante sons impulsionnels, aussi bien enregistrés que synthétisés. Dans le paragraphe suivant, nous allons décrire les stimuli étudiés.

VII-2.1 Stimuli

Une partie des sons étudiés étaient les sons que nous avions enregistrés. Nous avons reporté dans le tableau VII-1 certaines de leurs caractéristiques physiques, telles que le centre de gravité spectral en Hz (CGS), le niveau crête en dB SPL, les temps de montée et de descente en ms et l'énergie. La nature de la source est indiquée à la dernière colonne.

Les sons que nous avons synthétisés, pour une analyse plus fine, ont été construits sur le modèle de la figure VII-2. L'enveloppe était ensuite multipliée par la structure fine du signal (figure VII-3).

La structure fine était soit un son pur de l kHz (sons 25 à 28 du tableau VII-2) soit un bruit blanc (sons 29 à 40 du tableau VII-2). Le tableau VII-2 regroupe certaines des caractéristiques physiques des sons de synthèse.

VII-2.2 Auditeurs

Quinze auditeurs otologiquement normaux ont participé aux tests. Les auditeurs étaient des étudiants ou faisaient partie du personnel du Laboratoire de Mécanique et d'Acoustique de Marseille. Ils étaient âgés de 20 à 50 ans.

VII-2.3 Dispositif expérimental

L'interface numérique / analogique était une carte son Oros. Différentes atténuations pouvaient être appliquées aux signaux avec des atténuateurs programmables Wilsonics (model PATT). Les signaux étaient restitués via une enceinte amplifiée Genelec 1031A dans la salle anéchoïque du laboratoire. mesure des La

niveaux se faisait par l'intermédiaire d'un microphone Bruel & Kjaer (type 2669) situé à la place de la tête de l'auditeur en l'absence de celui-ci.

VII-2.4 Procédure

La sonie a été mesurée en utilisant une méthode d'estimation de grandeur sans référence (voir chapitre II-4-a). La tâche de l'auditeur consistait à estimer la sonie d'un son en donnant un nombre (réel positif) de son choix proportionnel à la sonie. Les sons étaient répétés 3 fois chacun et étaient présentés dans un ordre aléatoire, différent pour chaque auditeur. La sonie d'un son pour un auditeur est la moyenne géométrique de ses trois estimations. La valeur finale de la sonie est la moyenne géométrique des estimations des 15 auditeurs.

VII-2.5 Résultats

Les valeurs de la sonie mesurée par la méthode d'estimation de grandeur pour des sons impulsionnels enregistrés et synthétisés, sont données dans le tableau VII-3.

19

D'après la loi psychophysique de Stevens (1957), on s'attend à obtenir une relation de puissance entre la sonie (intensité subjective) et l'intensité physique (Energie /

Figure VII-3 : Exemple d'enveloppe et d'un son synthétisé (enveloppe multipliée par la structure fine)

temps). On notera que pour les sons impulsionnels que nous étudions, l'intensité varie dans le temps, la sonie donc aussi. Nous avons donc réalisé une régression linéaire sur les valeurs logarithmiques des caractéristiques physiques et de la sonie pour calculer les corrélations entre les différents paramètres (tableau VII-4).

On constate tout d'abord une bonne corrélation entre la sonie et l'énergie (R=0,88). Sur la figure VII-4, nous avons donc tracé le logarithme de la sonie (S) en fonction du logarithme de l'énergie (E). En pointillés est représentée la droite de régression entre ces deux paramètres (R=0,88). L'équation de cette droite est :

Log(S)= 0,3 Log(E) + 0,78 (IV-1)

On notera que l'on trouve expérimentalement, pour des sons impulsionnels, ce que Stevens (1957) a montré concernant les sons stationnaires : la sonie est une fonction de l'énergie à la puissance 0,3. Les valeurs des corrélations du tableau VII-4 permettent de montrer qu'il y a aussi une bonne corrélation entre la sonie et le niveau crête (R=0,70), ainsi qu'entre la sonie et le temps de descente (R=0,68). Cependant, ces trois paramètres (énergie, niveau crête et temps de descente) ne sont pas tous indépendants : l'énergie est corrélée au niveau crête (R=0,86) et au temps de descente (R=0,66). Afin de prendre en compte cette dépendance, nous avons réalisé une régression linéaire multiple

		(dB)	de montée (ms)	descente (ms)	(W.m-2.s)	Description
bimp01	2123	90	0,1	5,4	9,5	2 pierres
bimp02	1829	79	0,1	3,2	0,9	Pétard
bimp03	601	88,9	0,45	7,2	26,5	Ballon crevé
bimp04	600	78,1	0,1	3,7	١,١	Beachball
bimp05	764	78,5	١,١	18,3	6, I	Claquement de doigt dans la bouche
bimp06	2541	71,2	0,4	3,5	0,3	Claquement de langue
bimp07	895	91,6	١,7	8,9	64,5	Débouchage d'un bouchon de vin
bimp08	751	84,55	0,1	20,6	21,3	Débouchage d'un bouchon de champagne
bimp09	5665	86,25	0,1	3,2	2,5	Jouet clic-clac
bimp10	6420	87,4	0,4	9,3	17,2	Fer sur fer
bimp11	1615	81	2,2	3,5	2,7	Claquement de mains
bimp12	1932	85	0,2	5,5	6,3	Marteau sur bois
bimp13	798	71,7	١,4	54,4	2,2	Marteau sur carreau
bimp14	6535	88,8	0,9	10,9	18,8	Marteau sur fer
bimp15	2409	78,6	0,3	3,3	١,١	Marteau sur pierre
bimp I 6	2345	83,3	0,2	5,3	3,1	Ping pongl
bimp 7	1461	86	0,2	8,3	10,5	Ping pong2
bimp 8	643	90,2	4,2	7,1	58,7	Sac éclaté
bimp 9	1449	87,15	I,45	5,7	11,4	Tambourin
bimp20	13717	88,9	0,1	42, I	37,0	Triangle
bimp21	3959	90,3	0,1	3,8	12,1	Verre cassé
bimp22	2445	86,2	0,51	9,7	16,7	Wood-block manche
bimp23	2675	83,75	0,7	12,7	10,6	Wood-block
bimp24	2445	82,3	0,6	20,8	5,3	Xylophone

Tableau VII-1 : Caractéristiques des vingt-quatre sons impulsionnels enregistrés.

_____20

	Description	Niveau crête (dB)	Temps de montée (ms)	Temps de descente (ms)	Energie (W.m-2.s)
bimp25	Son pur 1 kHz	88,7	0,5	3,2	12,4
bimp26	Son pur I kHz	92,0	0,5	24,7	9,7
bimp27	Son pur I kHz	91,3	2,0	24,7	125,6
bimp28	Son pur I kHz	90,8	2,0	5,2	30,3
bimp29	Bruit blanc	91,5	0,2	24,4	68,5
bimp30	Bruit blanc	88,2	0,2	4,0	9,3
bimp3 l	Bruit blanc	90,6	0,3	66,8	208,3
bimp32	Bruit blanc	88,9	0,3	9,6	30,4
bimp33	Bruit blanc	89,7	0,5	4,3	13,4
bimp34	Bruit blanc	91,7	0,4	71,0	208,2
bimp35	Bruit blanc	89,4	0,3	9,7	30,8
bimp36	Bruit blanc	93,1	0,5	24,6	83,6
bimp37	Bruit blanc	91,3	1,5	24, I	75,3
bimp38	Bruit blanc	90,5	1,9	3,8	13,8
bimp39	Bruit blanc	92,3	1,8	71,0	210,0
bimp40	Bruit blanc	89,9	1,6	10,0	32,7

Tableau VII-2 : Caractéristiques physiques des seize sons impulsionnels synthétisés.

incrémentielle pour trouver la relation linéaire entre le logarithme de la sonie et le logarithme de l'énergie, le logarithme du temps de descente et le niveau crête. Le tableau VII-5 donne les coefficients de cette corrélation.

Une relation linéaire entre le logarithme de la sonie et le logarithme de l'énergie permet d'expliquer 77 % de la variance de la sonie (R^2 =0,77). Lorsque le temps de descente est également pris en compte dans la régression linéaire, on augmente le pourcentage de variance expliquée par la régression de 2 % (R^2 mod=0,02). Le logarithme de la sonie est alors corrélé à 79 % à la relation linéaire de l'énergie et du temps de descente (voir relation VII-3). Ajouter le niveau crête à l'énergie et au temps de descente dans l'ajustement de la régression linéaire augmente le pourcentage de variance expliquée de l'énergie et au temps de descente dans l'ajustement de la régression linéaire augmente le pourcentage de variance expliquée de 1%.

D'après les résultats de l'analyse incrémentielle de la régression multiple, l'influence du temps de descente sur la sonie ne serait pas significative (p=0,085>0,05). Cependant, il nous semble important de ne pas éliminer ce paramètre. En effet, de nombreuses études (voir Scharf, 1978) ont montré que la durée du signal avait une influence sur la sonie indépendamment de l'énergie. D'après nos données, la probabilité que le temps de descente n'ait pas

Sons réels	Sonie	bimp21	14,6
bimp01	14,3	bimp22	10,6
bimp02	6,1	bimp23	8,4
bimp03	17,5	bimp24	8,6
bimp04	8,6	Sons de synthèse	Sonie
bimp05	10,3	bimp25	9,4
bimp06	4,3	bimp26	18,7
bimp07	16,4	bimp27	14,6
bimp08	l 6,8	bimp28	10,1
bimp09	4	bimp29	24,2
bimp10	19,3	bimp30	16,6
bimpll	9,3	bimp31	42,4
bimp12	9,4	bimp32	14,7
bimp I 3	9,9	bimp33	13,6
bimp14	14,2	bimp34	43,4
bimp 5	6,5	bimp35	21,9
bimp16	9,1	bimp36	29,0
bimp17	5,	bimp37	25,4
bimp18	21,2	bimp38	10,9
bimp19	13,05	bimp39	40,9
bimp20	6,	bimp40	18,7

d'influence sur la sonie est de 0,085 (soit 8,5 %). Ce pourcentage n'étant pas beaucoup plus élevé que 5%, nous préférons ne pas éliminer le temps de descente dès à présent. Nous détaillerons au paragraphe VII-3 une étude confirmant cette influence. L'analyse permet aussi de montrer qu'il n'y a pas d'influence du niveau crête ni du temps de montée sur la sonie. En effet, la probabilité que le niveau crête n'ait pas d'influence sur la sonie est de 18 % (p=0,18 >>0,05), ce qui est loin d'être négligeable. Ainsi, une régression linéaire entre le logarithme de la sonie et les logarithmes de l'énergie et du temps de descente nous permet d'établir un premier estimateur

simple de la sonie de sons impulsionnels (« Estimateur impulsionnel ») :

Log(S)=0,27 Log(E) + 0,1 Log(Td) + C (IV-3)

Ce qui revient à écrire la relation : $S = k \cdot E^{0.27} \cdot Td^{0.1}$ (IV-4)

avec S la sonie mesurée, k est une constante de normalisation, E l'énergie du signal et Td le temps de descente du signal.

Le coefficient de corrélation entre la sonie calculée par ce nouvel estimateur et la sonie mesurée par les 15 auditeurs sur notre corpus de sons est de 0,89.

Cet estimateur de la sonie de sons impulsionnels a été testé sur une autre série de sons impulsionnels, pour vérifier sa validité. Les résultats sont donnés au paragraphe VII-4.

On notera que, contrairement à ce qui a été écrit au chapitre II, on ne trouve pas d'influence significative du temps de montée sur la sonie. Les signaux que nous avons étudiés ont en moyenne un temps de montée inférieur à 1,5 ms. Cela rejoint les résultats obtenus par Gustaffson (1974) qui indique que l'on n'observe une influence du temps de montée qu'à partir de durées supérieures à 1,5 ms.

VII-3 Influence de la durée de décroissance en fonction du niveau et de la fréquence

Dans le paragraphe précédent, nous avons montré que l'énergie est le principal facteur influençant la sonie. Nous avons aussi montré que la prise en compte du temps de descente améliore légèrement l'estimateur de la sonie issu de la régression linéaire. Suite à ces travaux, Meunier et Rabau (2002), de l'équipe de psychoacoustique du Laboratoire de Mécanique et d'Acoustique de Marseille, ont étudié l'influence du temps de descente en fonction de la fréquence et du niveau.

Je présente ici cette étude en détail car elle nous permet de confirmer l'influence du temps de descente sur la sonie et de

Figure VII-4 : Logarithme de la sonie en fonction du logarithme de l'énergie. La droite correspond à la fonction puissance (IV-2) sur une échelle logarithmique.

Matrice de corrélations	Nc	Log(Tm)	Log(Td)	Log(E)	Log(S)
Nc	I	0,14	0,24	0,86	0,70
Log(Tm)	0,14	I	0,16	0,29	0,15
Log(Td)	0,24	0,16	I	0,66	0,68
Log(E)	0,86	0,29	0,66	I	0,88
Log(S)	0,70	0,15	0,68	0,88	I

Tableau VII-4 : Matrice de corrélations entre le niveau crête Nc, le logarithme du temps de montée (Tm), le logarithme du temps de descente (Td), le logarithme de l'énergie (E) et le logarithme de la sonie (S).

Régression multiple incrémentielle	R	R ²	\mathbf{R}^{2}_{mod}	р
Log (Energie)	0,87	0,77	0,77	0
Log (Temps de descente)	0,89	0,79	0,02	0,085
Log (Niveau crête)	0,89	0,80	0,01	0,18

Tableau VII-5 : Coefficients de corrélation obtenus par une régression linéaire multiple incrémentielle entre le logarithme de la sonie et le logarithme de l'énergie (2^{ème} ligne). La troisième ligne donne la corrélation quand le temps de descente est ajouté à l'énergie pour l'établissement de la régression linéaire. Dans la dernière ligne, on donne la corrélation quand le niveau crête est ajouté au temps de descente et à l'énergie dans la régression linéaire. Le coefficient RÇmod traduit l'augmentation de RÇ.

conforter l'équation de l'estimateur de sonie d'impulsion.

VII-3.1 Stimuli

L'objectif de cette étude était de déterminer plus précisément l'influence du temps de descente sur la sonie. Pour étudier uniquement ce paramètre, tous les signaux ont été égalisés en énergie. Tous les sons étaient synthétisés et avaient la même forme temporelle que celle décrite au paragraphe VII-1 (voir figure VII-3). C'est-à-dire qu'ils présentaient un temps de montée

rapide (modélisé par une fonction linéaire croissante), un temps de descente plus long (modélisé par une fonction exponentielle décroissante) et pas de palier.

Les structures temporelles fines étudiées étaient :

- Une bande de bruit centrée à 1 kHz avec une largeur de 300 Hz
- Un son pur à 4 kHz

Le temps de montée était fixé à 2 ms. Le temps de descente variait de 4 à 1000 ms : 4, 5, 10, 15, 20, 40, 60, 80, 100, 200, 300, 400, 500, 600, 700, 800 et 1000 ms. Les signaux étudiés étaient présentés à trois niveaux crêtes différents : 70, 85 et 100 dB, pour un temps de descente de 4 ms. Les signaux ayant tous la même l'énergie, le niveau crête décroît quand le temps de descente augmente (voir figure VII-5). Pour contrôler la valeur de l'énergie, celle-

ci a été calculée à partir des sons enregistrés à la place de la tête de l'auditeur en l'absence de celui-ci. Les sons de même structure fine temporelle, pour un niveau crête donné à 4 ms, ont été égalisés en énergie à \pm 1 dB.

La sonie a été mesurée par une méthode d'estimation directe sans référence (voir paragraphe II-4-a). Douze auditeurs ont participé à cette expérience.

VII-3.2 Résultats

Les résultats obtenus concernant la bande de bruit sont représentés sur la figure IV-6 et ceux concernant le son pur à 4 kHz sur la figure VII-7. Globalement, la sonie croît avec le temps de descente à énergie constante. Plus les niveaux crêtes sont faibles, plus l'augmentation de la sonie avec le

23

temps de descente est importante. Pour les niveaux crêtes élevés, la sonie ne croît pas ou peu lorsque le temps de descente augmente. La relation entre la sonie (S) et le temps de descente (Td) est de la forme :

 $S = A.T_{d^{\alpha}}$ (IV-5)

où A et α sont des constantes ; α dépend du niveau du signal et de la structure fine temporelle du signal.

Une analyse statistique sur la variance a permis de montrer que, pour la bande de bruit (figure VII-6), la variation de la sonie avec le temps de descente est significative pour les niveaux crêtes de 70 dB (F(N=12, dl=16)=2,4 ; p=0,002) et 100 dB (F(N=12, dl=16)=1,89; p=0,02)). Par contre, pour un niveau crête de 85 dB, la variation n'est pas significative (F(N=12, dl=16)=0,9; p=0,55). Cependant, les résultats observés sur la figure VII-6 (en haut à droite) ont poussé les auteurs à rejeter cette hypothèse. En effet, la tendance de la courbe montre que la sonie augmente avec le temps de descente. D'autres expériences auraient été souhaitables pour lever cette ambiguïté.

24

L'analyse de la variance, sur le son pur de 4 kHz (figure VII-7), permet de montrer que l'influence du temps de descente est significative pour les niveaux crêtes de 70 dB (F(N=12, dl=16)=2, 16; p=0,008) et de 85 dB (F(N=12, dl=16)=2, 23; p=0,005). La sonie augmente lorsque le temps de descente augmente. Par contre, il n'y a pas de variation significative de la sonie avec le temps de descente pour les niveaux crêtes de 100 dB (F(N=12, dl=16)=0,6; p=0,88).

L'influence du temps de descente sur la sonie dépend clairement du niveau crête. Cette influence est plus marquée pour une bande de bruit centrée à l kHz avec une largeur de bande de 300 Hz de faibles niveaux crêtes (< ou = 70 dB SPL).

La sonie dépend du temps de descente selon une fonction puissance (relation VII-5). La valeur de l'exposant α se situe autour de 0,1 pour des niveaux crêtes de 70 dB. Cette valeur de α diminue de moitié pour une augmentation du niveau crête de 15 dB (voir figures VII-6 et VII-7).

On peut ainsi confirmer, suite à cette étude de Meunier et Rabau (2002), l'influence du temps de descente sur la sonie et la validité de l'équation VII-4 de notre estimateur de sonie. Notons aussi que l'exposant de la fonction puissance du temps de descente dépend du niveau crête des signaux.

VII-4 Test de l'estimateur de sonie d'impulsion

Le but de ce paragraphe est, dans un premier temps, de tester notre estimateur de sonie de sons impulsionnels sur une nouvelle série de sons et, dans un deuxième temps, de comparer les résultats aux

Sons impulsionnels de l'environnement		
MAR (phones)	
Nmax		
Nimp	10	
N5	9	
ESI	2	
STLmax	13	
Rmax (phones)	
Nmax	15	
Nimp	14	
N5	14	
ESI	8	
STLmax	18	
Rmean	(phones)	
Nmax		
Nimp	10	
N5	9	
ESI	I	
STLmax	13	
Rs	td	
Nmax	3	
Nimp	3	
N5	3	
ESI	3	
STLmax	4	

Tableau VII-7 : Récapitulatifs des indices proposés dans le chapitre III afin de pouvoir évaluer l'efficacité des modèles de sonie.

Noms	Description	Niveaux crêtes en dB SPL	Durées totale (ms)
bimp01	2 pierres	80	30
bimp10	Fer sur fer	78	180
bimp I 3	Marteau sur carreau	73	200
bimp14	Marteau sur fer	81	60
bimp20	Triangle	78	200
bimp22	Wood-block manche	78	115
bimp23	Wood-block	83	50
chantl	Coup de marteau sur béton	71	350
imp6	2 pierres	79	30
chant3	Coup de marteau sur fer	65	840
imp4	Coup de marteau sur fer	63	380
imp2	Coup de marteau sur béton	61	390
imp3	Coup de marteau sur bois	64	240

Tableau VII-6 : Récapitulatif des signaux testés : description des sons, niveaux crêtes en dB et durée totale du signal en ms.

modèles de sonie existants pour des sons non stationnaires c'est-à-dire ici aux modèles de Zwicker et Fastl (1999) et de Glasberg et Moore (2002).

VII-4.1 Stimuli

Les sons impulsionnels étudiés étaient des sons issus des bruits de chantier (chant I, chant 3, imp 4, imp 2 et imp 3 ; voir paragraphe III-2.2) et des sons utilisés pour l'élaboration de l'estimateur de sonie d'impulsion (voir paragraphe VII-2) restitués à des niveaux crêtes différents. Les niveaux crêtes ont été modifiés pour cette expérience et sont compris entre 61 et 83 dB SPL. Les six derniers sons du tableau VII-6 sont issus de l'étude sur les bruits de chantier décrite dans l'introduction de la thèse.

VII-4.2 Auditeurs

La sonie a été mesurée par quinze auditeurs âgés de 25 à 40 ans (4 femmes et 11 hommes). La plupart des auditeurs étaient des étudiants ou des personnels du laboratoire d'acoustique de Bochum en Allemagne (Institut für Kommunikationsakustik Ruhr-Universität). L'expérience a eu lieu à Bochum dans la salle anéchoïque de dimension 5,13 m de largeur x 4,98 m de profondeur x 4,76 m de hauteur avec une fréquence de coupure basse de 110 Hz.

VII-4.3 Dispositif expérimental

Les sons étaient transmis via une interface numérique/analogique Power-SDAC PDI (Tucker & Davis). Le niveau des sons était réglé par rapport au niveau d'un son pur de 98 dB SPL à I kHz à l'aide d'un microphone AKG (type C414 B-ULS) situé à la place de la tête de l'auditeur en l'absence de celui-ci. Les sons étaient amplifiés via un amplificateur Yamaha et étaient restitués par une enceinte Génélec (type 2029) dans la salle anéchoïque.

VII-4.4 Procédure

La sonie a été mesurée par une méthode d'estimation directe sans référence. Pour

chaque son, l'auditeur réalisait deux estimations. L'ordre de présentation des sons était aléatoire et différent pour chaque auditeur. Dans chaque session, un son de référence de sonie connue (son pur de I kHz à 40 dB SPL soit I sone) était présent pour normaliser les résultats et pouvoir calculer la sonie en sones. La sonie d'un son était la moyenne géométrique des deux estimations des quinze auditeurs.

VII-4.5 Résultats

Une de nos volontés durant ce travail de recherche était de travailler avec des niveaux d'isosonie en phones, plus proches de la mesure physique et plus faciles à maîtriser que le sone pour des personnes n'ayant que très peu de notion en psychoacoustique. Nous avons calculé les niveaux d'isosonie de chaque son, à partir de la relation VII-6, ainsi que le N5, le Nmax, le Nimp, le STLmax, le LTLmax et l'ESI définis cidessous.

Phones = $40 + 10 \cdot \log_2(\text{Sones})$ (VII-6)

Le N5 est le niveau d'isosonie dépassé 5% du temps. Cet indicateur a été préconisé par Zwicker pour estimer la sonie globale de sons variant dans le temps. Le Nmax et le Nimp sont des indicateurs que nous proposons. Nous ne les définirons pas ici pour des raisons de confidentialité industrielle. Nous avons choisi d'utiliser ces deux indicateurs car, à la différence du N5, ils sont indépendants de la durée du son. Le calcul du Nmax et du Nimp présente un autre avantage, car on s'affranchit, dans leur calcul, de la détermination de la durée qui est toujours une tâche délicate pour ce type de son.

Le STLmax et le LTLmax sont les maximums du niveau d'isosonie, à court terme et à long terme. Ces indicateurs sont préconisés par Glasberg et Moore pour estimer la sonie globale de sons courts (STLmax) et de sons variant lentement dans le temps (LTLmax).

L'ESI est le niveau d'isosonie obtenu par notre estimateur de sonie d'impulsion. La constante de normalisation de l'estimateur (k de la relation VII-4) a été ajusté sur ces données. Pour des raisons de confidentialité, elle n'est pas communiquée.

25

La figure VII-8 représente les niveaux d'isosonie mesurés ainsi que les indicateurs calculés (N5, Nimp, Nmax, STLmax, LTLmax), et le niveau d'isosonie d'impulsion (ESI). Les lignes reliant les points expérimen-

Figure VII-8 : Niveaux d'isosonie en phones pour les différents sons étudiés. Les croix représentent le niveau d'isosonie mesuré. Les losanges creux représentent le Nmax, les cercles vides le Nimp, les carrés le N5, les cercles pleins l'ESI et les triangles le STLmax.

taux n'ont pas de sens psychoacoustique, mais elles permettent une meilleure visibilité des résultats de chacun des indicateurs calculés pour les sons, classés dans un ordre croissant du niveau d'isosonie mesuré.

Le tableau VII-7 donne le MAR (moyenne des valeurs absolues de la différence entre le niveau d'isosonie calculé et le niveau d'isosonie mesuré), le Rmax (valeur absolue de l'erreur maximum obtenue par les modèles de sonie ou l'estimateur ESI), le Rmean (écart moyen) et le Rstd (écart type des écarts moyens). Il apparaît clairement que les indicateurs (Nmax, Nimp, N5 et STLmax) donnent des niveaux d'isosonie supérieurs à ceux mesurés. Le modèle de Moore 2002 donne des écarts légèrement plus grands que ceux obtenus avec le modèle de Zwicker 1999 (MAR = 13 phones et Rmax = 18 phones). De manière relative, ces deux modèles donnent des résultats assez proches. Ils ont tendance à donner des niveaux d'isosonie supérieurs à ceux mesurés (Rmean = MAR = environ 10 phones).

L'ESI, dont la constante de normalisation a été ajusté sur ces données, donne un niveau d'isosonie réparti uniformément autour de ceux mesurés (Rmean =1). On ne constate pas non plus de biais systématique (Rstd > 3).

L'estimateur que nous avons proposé, pour ces signaux, prédit le mieux le niveau d'isosonie mesuré avec un MAR de 2 phones. Cependant, il a été ajusté sur ces données, ce qui atténue quelque peu la portée de ces résultats. Il nous faut donc poursuivre cette recherche de validation et la comparaison avec les modèles existants avant de conclure sur l'efficacité de notre estimateur de sonie d'impulsion (voir chapitre VIII).

Notons aussi que le niveau d'isosonie mesuré est déterminé à partir de la méthode d'estimation directement et non à partir d'une méthode donnant directement le niveau d'isosonie telle que la méthode d'ajustement. Nous verrons dans le chapitre suivant que le niveau d'isosonie mesuré ainsi peut être quelque peu inférieur à celui obtenu avec la méthode d'ajustement. Cela peut expliquer la surestimation des modèles par rapport aux mesures.

VII-5 Conclusion

Les travaux antérieurs à notre étude montrent que la sonie des sons impulsionnels dépend non seulement de l'énergie ou du temps de descente mais aussi du niveau crête ou du temps de montée. Ces études ont été faites pour la plupart sur des bruits en créneau, c'est-à-dire que les sons présentaient un palier au maximum d'amplitude. Dans notre étude, nous avons voulu étudier des bruits impulsionnels « naturels », par opposition à un son de synthèse. Les sons impulsionnels « naturels » ne présentent pas de palier.

L'influence du temps de montée ou du niveau crête sur la sonie n'a pas été mise en évidence pour les signaux que nous avons étudiés. Il se peut que les temps de montée de nos sons tests soient dans une tranche de durée (< 1,5 ms) où effectivement il n'y a pas d'influence sur la sonie (Gustaffson, 1974). De plus, le niveau crête était corrélé à l'énergie. Son influence est donc dissimulée dans la corrélation entre la sonie et l'énergie.

Pour résumer, dans le cas de sons de durées courtes (< l s) sur lesquels porte notre étude, la sonie estimée (S) dépend essentiellement de l'énergie (S= $kE^{0.3}$; R=0,87) ce qui est en accord avec le modèle de l'oreille comme intégrateur d'énergie. Cependant, on a observé que le temps de descente, proportionnel à la durée du signal, devait être également pris en compte pour une meilleure estimation de la sonie.

Une étude a été réalisée par Meunier et Rabau (2002) pour déterminer l'influence du temps de descente, à énergie constante, sur la sonie. L'influence du temps de descente sur la sonie dépend du niveau et de la fréquence. En effet, pour des niveaux crêtes peu élevés (70 dB) l'influence du temps de descente est significative.

Cette influence s'amenuise lorsque le niveau crête augmente et la sonie augmente d'autant moins avec la durée. De plus, cette étude montre aussi que la sonie augmente plus rapidement quand le temps de descente augmente pour la bande de bruit. Nous avons voulu, dans un dernier temps, tester le « modèle impulsionnel » que nous avons établi sur une série de sons impulsionnels. Ainsi, nous avons montré que ce modèle estime, en moyenne, la sonie de sons impulsionnels à 2 phones près, avec cependant quelques écarts importants.

On peut conclure de manière générale que la sonie dépend essentiellement de l'énergie mais aussi du temps de descente. Ainsi, à énergie constante, la sonie augmente quand le temps de descente du signal augmente. On retrouve donc la relation 2 décrite au paragraphe II-2.2-b (Scharf, 1978).

Cependant, les écarts types sur nos données sont assez importants (de l'ordre de 7 phones). Stephens (1974) et Florentine et coll. (1996) ont montré que la procédure expérimentale est un facteur pouvant expliquer la disparité des résultats.

L'objectif de ce chapitre est de comparer les niveaux d'isosonie calculés par les différents modèles, décrits dans le chapitre III, à des données expérimentales de la littérature et aux données expérimentales que nous avons obtenues lors de ce travail de thèse. Nous avons aussi calculé le niveau d'isosonie avec l'estimateur de sonie d'impulsion (ESI). Dans une première partie, nous avons comparé les niveaux d'isosonie calculés à des données expérimentales connues pour des sons stationnaires (fonctions de sonie, lignes isosoniques et influence de la largeur de bande). Dans une deuxième partie, à partir des données expérimentales que nous avons obtenues lors de ce travail de thèse, nous avons testé les modèles sur des sons non stationnaires et sur des sons impulsionnels.

Nous rappelons ci-dessous ce que chaque modèle ou estimateur permet de calculer

et pour quel type de son il est prévu :

- Modèle de Zwicker (1958)
 Ce modèle permet de calculer la sonie et le niveau d'isosonie de sons stationnaires.
 Dans ce qui suit, le modèle sera noté Zwicker 1958.
- Modèle de Moore et coll. (1997) Ce modèle permet de calculer la sonie et le niveau d'isosonie de sons stationnaires. Dans ce qui suit, le modèle sera noté Moore 1997.

- Modèle de Zwicker et Fastl (1999)

Ce modèle donne la sonie et le niveau d'isosonie en fonction du temps de sons non stationnaires. Différents indicateurs, préconisés par les auteurs pour approcher le niveau d'isosonie global, sont calculés à partir du niveau d'isosonie en fonction du temps. Il s'agit ici du niveau d'isosonie dépassé 5% du temps (N5). Il sera noté Zwicker 1999 (N5). Nous proposons d'autres indicateurs tels que le Nmax, ou le Nimp. Pour des raisons de confidentialité, nous ne les définirons pas. Ils seront notés Zwicker 1999 (Nmax) et Zwicker 1999 (Nimp). Ces deux derniers indicateurs nous semblent mieux adaptés au calcul du niveau d'isosonie global de sons non stationnaires et impulsionnels. C'est ce que nous vérifierons dans la deuxième partie de ce chapitre.

Modèle de Glasberg et Moore (2002) Ce modèle donne la sonie en fonction du temps de sons variant dans le temps. Les auteurs préconisent de calculer la valeur maximale du niveau d'isosonie à court terme (noté Moore 2002 (STLmax)) pour approcher le niveau d'isosonie global de sons variant dans le temps. Le maximum du niveau d'isosonie à long terme (noté Moore 2002 (LTLmax)) ainsi que la moyenne des valeurs du niveau d'isosonie à long terme (noté Moore 2002 (LTLmoy)), selon les auteurs, permettent de calculer le niveau d'isosonie global de sons stationnaires.

Le niveau d'isosonie à court terme est le niveau d'isosonie perçu à chaque instant. Le niveau d'isosonie à long terme correspondant au niveau d'isosonie global d'un son restant en mémoire après l'arrêt de ce son.

- Estimateur de sonie de sons impulsionnels (ESI)

Cet estimateur, résultat de nos propres recherches, permet de calculer le niveau d'isosonie de sons impulsionnels.

VIII-1 Etude des modèles de sonie sur des données expérimentales de la littérature pour des sons stationnaires

Nous comparons dans ce paragraphe les données obtenues par les différents modèles de sonie à celles de la littérature de sons stationnaires de l seconde.

VIII-1.1 Fonctions de sonie de sons stationnaires

La figure VIII-1 montre la relation entre le niveau de pression d'un son pur stationnaire de l kHz de l seconde (égal au niveau d'isosonie) et la sonie calculée par les modèles de Zwicker 1958 (pointillés) et Moore 1997 (traits tirets), et mesurée (cercles) lors d'une étude de Canévet et coll. (1986) et d'une étude de Hellman et Zwislocki (1963) avec une écoute en champ libre. Les modèles fournissent bien la fonction de sonie d'un son pur à 1 kHz obtenue expérimentalement.

Rappelons que nous nous intéressons aux niveaux d'isosonie, exprimé en phones. Cette unité est plus pratique, dans le domaine industriel et en métrologie, car elle est plus proche du niveau de pression en dB SPL.

Dans ce qui suit, nous présentons les niveaux d'isosonie, calculés à partir des modèle de Zwicker (1958) et de Moore et coll. (1997), de sons stationnaires de l seconde, de fréquence 160 Hz (figure VIII-2) et 4 kHz (figure VIII-3) de niveaux compris entre 0 et 100 dB SPL. Les données expérimentales auxquelles sont comparés les niveaux d'isosonie calculés sont issues des normes ISO 226 de 1987 (représentées par des cercles) et de 2003 (représentées par des carrés). Il est important de souligner que les modèles de sonie de sons stationnaires ont été ajustés sur les lignes isosoniques de la norme ISO 226 (1987). Il est toutefois intéressant de faire figurer les deux normes car la norme ISO 226 a fait l'objet d'une modification suite à de nombreux travaux

27

Figure VIII-1 : Fonction de sonie d'un son pur de 1 kHz de 1 seconde. La sonie est calculée par les modèles de Moore 1997 (traits tirets) et Zwicker 1958 (pointillés). Les données expérimentales (cercles et carrés) sont issues d'études en champ libre, de Canévet et coll. (1986) et de Hellman et Zwislocki (1963).

28

Figure VIII-5 : Ligne isosonique de sons stationnaires de 1 seconde à 50 phones calculées par les modèles de Zwicker 1958 (pointillés) et de Moore 1997 (traits-tirets). Les cercles et les carrés représentent les lignes isosoniques à 50 phones obtenues expérimentalement et publiées respectivement dans la norme ISO 226 de 1987 et de 2003.

expérimentaux inter-laboratoires (ISO 226 (2003)) et présente des écarts non négligeables avec l'ancienne norme.

En ce qui concerne le son pur de 160 Hz, et pour des niveaux inférieurs à 80 dB SPL, les prévisions faites par les modèles sont bien en accord avec les données expérimentales de la norme ISO 226 de 1987.Au-delà de 80 dB SPL, les données du modèle de Zwicker 1958 s'écartent légèrement des données expérimentales. Les écarts les plus grands par rapport aux données de la norme ISO 226 de 1987 sont de l'ordre de 10 phones. On constate des écarts du même ordre de grandeur entre les deux normes.

De même que pour les sons purs de 160 Hz et 1 kHz, on observe pour le son pur de 4 kHz, sur la figure VIII-3, que de manière générale, le modèle de Moore 1997 donne des valeurs équivalentes à la norme ISO 226 de 1987, avec des écarts inférieurs à 5 phones. Le modèle de Zwicker 1958, quant à lui, donne des valeurs légèrement inférieures à celles de la norme de 1987. Les écarts peuvent être de 10 phones pour les niveaux les plus élevés.

Globalement, les modèles donnent des niveaux d'isosonie proches des valeurs expérimentales. On constate des écarts, pour des sons purs de niveaux élevés, pouvant être de l'ordre de 10 phones pour les plus grands.

29

On observe des écarts du même ordre de grandeur entre les deux normes.

Nous avons, dans ce qui suit, comparé les niveaux d'isosonie, calculés par les modèles et obtenus expérimentalement, pour des sons de spectre plus complexe. Des données étant publiées pour des bruits blancs stationnaires (Scharf, 1978), nous avons testé ce type de son pour des niveaux de pression compris entre 0 et 100 dB SPL (voir figure VIII-4). Les deux modèles donnent des niveaux d'isosonie supérieurs aux données de Scharf avec un écart maximum de 5 phones pour le modèle de Zwicker 1958 et de 10 phones pour le modèle de Moore 1997.

L'étape suivante consiste à comparer des lignes isosoniques obtenues par les différents modèles à des données expérimentales à différents niveaux d'isosonie.

VIII-1.2 Lignes isosoniques de sons stationnaires

Les figures VIII-7, VIII-8 et VIII-9 montrent respectivement les lignes isosoniques à 50, 60 et 80 phones, données par les modèles de Zwicker 1958 et de Moore 1997 pour des sons stationnaires. Ces données sont comparées aux lignes isosoniques, obtenues expérimentalement et publiées dans les normes ISO 226 de 1987 (cercles), sur

Figure VIII-6 : Ligne isosonique de sons stationnaires de 1 seconde à 60 phones calculées par les modèles de Zwicker 1958 (pointillés) et de Moore 1997 (traits-tirets). Les cercles et les carrés représentent les lignes isosoniques à 60 phones obtenues expérimentalement et publiées respectivement dans la norme ISO 226 de 1987 et de 2003.

lesquelles les modèles ont été ajustés. Nous représentons, comme dans le paragraphe précédent, les données de la norme ISO 226 de 2003 afin de montrer les différences entre les deux normes.

Les lignes isosoniques calculées par les deux modèles sont équivalentes à celles de la norme ISO 226 (1987). On constate cependant que le modèle de Zwicker 1958 donne des valeurs plus faibles que celles de la norme de 1987 pour des fréquences inférieures à 100 Hz et des valeurs plus élevées pour le son à 12500 Hz.

Selon Zwicker, l'oreille fonctionne comme un banc de filtres modélisés par des bandes critiques. La largeur des bandes critiques est de 100 Hz pour des fréquences centrales inférieures à 500 Hz (voir tableau III-1). Dans chaque bande critique, Zwicker calcule un niveau d'excitation constant. Cela explique, pour des fréquences inférieures à 100 Hz faisant partie d'une même bande critique, les valeurs constantes du niveau d'isosonie. On peut aussi observer un tel palier pour les sons purs de fréquences 100, 125 et 160 Hz (fréquences d'une même bande critique).

On observe aussi que le modèle de Moore

1997 donne des valeurs légèrement supérieures à celles de la norme ISO 226 (1987) pour les hautes fréquences (de 8 à 12,5 kHz). On constate que ces valeurs sont très proches de celles de la norme de 2003.

Les figures VIII-8, VIII-9 et VIII-10 représentent les lignes isosoniques calculées par les modèles développés pour des sons non stationnaires (Zwicker 1999 (Nmax) et Moore 2002 (LTLmax)). Ces deux modèles, prévus pour des sons non stationnaires, ont été aussi validés pour des sons stationnaires. C'est ce que nous vérifions ici. Le modèle de Moore 2002, contrairement aux autres, a été ajusté sur des données expérimentales proches de celles de la norme ISO 226 de 2003.

Pour des fréquences comprises entre 50 Hz et 10 kHz, le modèle Zwicker 1999 (Nmax) donne des valeurs très proches (2 phones près) de celles de la norme ISO 226 de 1987. Pour des fréquences inférieures à 50 Hz, le Nmax est inférieur aux valeurs données par les deux normes ISO 226 pour les mêmes raisons que celles citées pour le modèle de Zwicker 1958. Pour des fréquences supérieures à 10 kHz, le modèle de Zwicker 1999 (Nmax) donne des valeurs supérieures à celles des deux normes. Cet écart est d'autant plus grand que le niveau d'isosonie est plus élevé.

Le modèle de Moore 2002 (LTLmax), donne des valeurs équivalentes à celles de la norme ISO 226 (2003), sauf pour des fréquences comprises entre I et 7 kHz pour lesquelles les valeurs du niveau d'isosonie sont plus proches de celles de la norme ISO 226 (1987).

VIII-1.3 Influence de la largeur de bande de sons stationnaires

La sonie d'un son dépend de sa largeur spectrale. Si la largeur spectrale d'un son d'intensité constante croît, la sonie reste constante jusqu'à ce que la largeur spectrale dépasse une largeur critique appelée bande critique. Pour des niveaux d'isosonie supérieurs à 20 phones, si la largeur de la bande augmente au-delà de la valeur critique, la sonie augmente. La largeur des bandes critiques dépend de la fréquence centrale de la bande. Pour une bande de bruit centrée à l kHz, la largeur de la bande critique est de 160 Hz.

La figure VIII-11 représente les niveaux d'isosonie calculés par les modèles de Zwicker 1958 et de Moore 1997 pour une bande de

Figure VIII-10 : Ligne Isosonique de sons stationnaires de T seconde a 80 phones calculées par les modèles de Zwicker 1999 (Nmax) (pointillés) et de Moore 2002 (LTLmax) (traits-tirets). Les cercles et les carrés représentent les lignes isosoniques à 80 phones obtenues expérimentalement et publiées respectivement dans la norme ISO 226 de 1987 et de 2003.

bruit de 1 s centrée géométriquement sur 1 kHz de 40, 60 et 80 dB. Les valeurs choisies pour les largeurs de la bande de bruit sont comprises entre 20 Hz et 5000 Hz. Nous avons aussi représenté des données expérimentales issues de Scharf (1978).

L'allure des courbes fournies par les modèles coïncident à moins de 4 phones près avec celles de Scharf (1978). En effet, le niveau d'isosonie reste constant pour des largeurs de bande inférieures à 160 Hz. De plus, pour des largeurs de bandes supérieures à 160 Hz, le niveau d'isosonie augmente plus à 40 et à 60 dB qu'à 80 dB.

Nous avons, dans les paragraphes précédents, comparé les niveaux d'isosonie calculés par les modèles de sonie à des données expérimentales pour des sons stationnaires. Dans les paragraphes suivants, les modèles vont être tour à tour testés sur les différentes données expérimentales que nous avons établies durant notre travail de recherche (chapitres V, VI et VII). Ainsi, nous avons testé les modèles sur des données expérimentales concernant les lignes isosoniques de sons impulsionnels et l'intégration temporelle de sons impulsionnels et de créneaux. Enfin, les données des modèles ont été comparées aux données obtenues expérimentalement pour différents types de sons.

VIII-2 Etude des modèles de sonie sur les données expérimentales du travail de thèse

VIII-2.1 Lignes isosoniques de sons impulsionnels

Dans le chapitre VI, nous avons présenté les lignes isosoniques à 50, 60 et 75 phones de sons impulsionnels de 22 ms. C'est-à-dire que nous avons déterminé les niveaux crêtes que doivent avoir les sons impulsionnels pour avoir un niveau d'isosonie de 50, 60 ou 75 phones. Les résultats sont rappelés par la figure VIII-12. En ordonnées, nous avons porté les niveaux crêtes pour lesquels les sons sont de sonie égale. La dispersion des données est de l'ordre de 6 dB. Nous avons calculé le niveau d'isosonie de ces sons en utilisant les différents modèles. Les sons avaient pour niveau crête celui mesuré lors de la détermination des lignes isosoniques (ordonnée de la figure VIII-12).

Les figures VIII-13, VIII-14 et VIII-15 représentent les niveaux d'isosonie donnés par le modèle de Zwicker 1999 (Nimp et Nmax), par notre « estimateur de sonie impulsionnelle » (ESI) et par le modèle de Moore 2002 (STLmax). Les niveaux crêtes des sons sont ceux mesurés pour lesquels les sons sont de niveaux d'isosonie égal à 50, 60 et 75 phones. Ainsi, un modèle qui correspondrait parfaitement à nos données fournirait des points alignés sur une droite horizontale passant par 50, 60 et 75 phones respectivement.

De manière générale, et d'après les figures VIII-13, VIII-14 et VIII-15, les modèles donnent le niveau d'isosonie à moins de 5 phones près. Pour la ligne à 50 phones, les niveaux d'isosonie calculés sont globalement légèrement supérieurs. A 60 phones, au contraire, les modèles donnent des niveaux d'isosonie inférieurs à ceux mesurés. En ce qui concerne la dernière ligne isosonique à 75 phones, les modèles donnent un niveau d'isosonie au-dessous de celui mesuré. On observe aussi que l'écart entre le niveau d'isosonie calculé et mesuré est plus grand qu'à 60 phones. Plus le niveau augmente, plus le niveau d'isosonie calculé est inférieur à celui pour lequel les niveaux des sons ont été ajustés.

L'estimateur de sonie d'impulsion (ESI) suit les lignes isosoniques, or celui-ci ne tient pas compte des variation de la sensibilité de l'oreille en fonction de la fréquence. L'ESI dépend de l'énergie et du temps de descente de l'impulsion, soit du niveau du son ajusté. Cela confirme la validité de l'exposant de l'énergie, du moins à 50 et 60 phones.

Le tableau VIII-I donne le MAR (moyenne des valeurs absolues des écarts), le Rmax (écart maximum), le Rmean (écart moyen) et le Rstd (écart type des écarts moyens) pour les trois lignes isosoniques confondues. En plus des indicateurs calculés à partir du modèle de Zwicker 1999 (Nmax

MAR	
Zwicker 1999 (Nmax)	3
Zwicker 1999 (Nimp)	3
Zwicker 1999 (N5)	6
ESI	4
Moore 2002 (STLmax)	3
Rmax	
Zwicker 1999 (Nmax)	7
Zwicker 1999 (Nimp)	8
Zwicker 1999 (N5)	15
ESI	
Moore 2002 (STLmax)	
Rmean	
Zwicker 1999 (Nmax)	-
Zwicker 1999 (Nimp)	-2
Zwicker 1999 (N5)	-6
ESI	-
Moore 2002 (STLmax)	-2
Rstd	
Zwicker 1999 (Nmax)	3
Zwicker 1999 (Nimp)	3
Zwicker 1999 (N5)	4
ESI	5
Moore 2002 (STLmax)	3

Tableau VIII-1 : Récapitulatifs des indices proposés (définis au chapitre III) afin de pouvoir évaluer l'efficacité des modèles de sonie.

et Nimp), nous avons représenté, dans le tableau VIII-1, le Zwicker 1999 (N5) pour permettre une comparaison plus poussée entre les différents indicateurs.

D'après le tableau VIII-I, trois indicateurs (Nmax, Nimp et STLmax) donnent en moyenne des niveaux d'isosonie proches de ceux mesurés (MAR = 3 phones). Par

32

Figure VIII-13 : Niveaux d'isosonie calculés, en fonction de la fréquence de la porteuse, de sons impulsionnels de 22 ms dont le niveau d'isosonie mesuré est de 50 phones.

Figure VIII-16 : Niveaux d'isosonie calculés des créneaux de 1kHz en fonction de la durée en millisecondes. Les croix correspondent aux niveaux d'isosonie mesurés. Les barres verticales représentent les valeurs des écarts types des mesures du niveaux d'isosonie.

contre l'écart maximum (Rmax) de ces trois indicateurs peut être de 7 phones pour Zwicker 1999 (Nmax), de 8 phones pour Zwicker 1999 (Nimp) et de 11 phones pour Moore 2002 (STLmax). Les niveaux d'isosonie calculés avec l'estimateur de sonie d'impulsion (ESI) sont comparables à ceux donnés par les modèles (MAR = 4 phones, Rmax = 11 phones). Cependant, l'écart est plus important (5 à 10 phones) pour des sons dont les structures fines sont des hautes fréquences, en particulier pour des niveaux d'isosonie inférieurs à 75 phones.

Pour résumer, les modèles ont tendance à donner un niveau d'isosonie inférieur au niveau d'isosonie attendu (Rmean<0), en particulier pour des niveaux d'isosonie supérieurs à 50 phones. En effet, à 50 phones, les niveaux d'isosonie calculés sont supérieurs à ceux mesurés. On n'observe pas non plus d'écart constant (Rstd>0).

Le modèle qui fournit le niveau d'isosonie le plus proche des valeurs attendues est le

Zwicker 1999 (Nmax et Nimp) qui présente un écart moyen de 3 phones et un écart maximum de l'ordre de 7 ou 8 phones.

Contrairement à ce que nous obtenons ici, dans le chapitre III, les modèles avaient tendance à surestimer les niveaux d'isosonie mesurés des bruits de chantier pour des niveaux élevés et à les sous-estimer pour des niveaux faibles. Notons que les bruits de chantier étaient composés non seulement de sons impulsionnels mais aussi de sons quasi-stationnaires, non stationnaires et des trains d'impul-

MAR	Créneaux	Impulsions
Zwicker 1999 (Nmax)	2
Zwicker 1999 (Nimp)	I	2
Zwicker 1999 (N5)	I	Ι
ESI	4	6
Moore 2002 (STLmax	:) I	2
Rmax		
Zwicker 1999 (Nmax) 3	5
Zwicker 1999 (Nimp)	2	4
Zwicker 1999 (N5)	3	3
ESI	9	14
Moore 2002 (STLmax	:) 2	3
Rmean		
Zwicker 1999 (Nmax)	2
Zwicker 1999 (Nimp)	0	Ι
Zwicker 1999 (N5)	I	Ι
ESI	2	5
Moore 2002 (STLmax	:) 0	
Rstd		
Zwicker 1999 (Nmax)	2
Zwicker 1999 (Nimp)	I	2
Zwicker 1999 (N5)	I	
ESI	5	6
Moore 2002 (STLmax	:) I	Ι

Tableau VIII-2 : Récapitulatifs des indices proposés (définis au chapitre III) afin de pouvoir évaluer l'efficacité des modèles de sonie concernant les données expérimentales sur l'intégration temporelle de créneaux (colonne du milieu) et d'impulsions (colonne de droite) de 1 kHz.

sions. Nous ne retrouvons pas ici, pour des sons impulsionnels, la limite des modèles décrite dans le chapitre III concernant plus particulièrement des sons stationnaires.

VIII-2.2 Intégration temporelle

Nous avons décrit, dans le chapitre VII, l'effet de la durée sur le niveau d'isosonie. Les sons testés étaient soit des créneaux, soit des impulsions dont les niveaux crêtes étaient tous de 72 dB SPL. Les figures VIII-16 et VIII-17 représentent, en fonction de la durée, respectivement pour les créneaux et les impulsions, les niveaux d'isosonie mesurés et calculés par le modèle de Zwicker et Fastl (N5, Nimp et Nmax), le modèle de Glasberg et Moore (STLmax) et

Figure VIII-17 : Niveaux d'isosonie calculés des impulsions de 1kHz en fonction de la durée en secondes. Les croix correspondent aux niveaux d'isosonie mesurés. Les barres verticales représentent les valeurs des écarts types des mesures du niveaux d'isosonie.

par notre estimateur de sonie d'impulsion (ESI). Les segments verticaux représentent les écarts types à la moyenne des mesures du niveau d'isosonie.

On observe sur la figure VIII-16 que, pour les créneaux, les modèles donnent, à moins de 2 phones près, les niveaux d'isosonie mesurés.

En ce qui concerne les impulsions (figure VIII-17), on observe des écarts plus grands entre les niveaux d'isosonie donnés par les modèles et ceux mesurés, en particulier pour des durées supérieures à 300 ms. Pour ces durées, les valeurs du niveau d'isosonie calculé se situent au-delà des valeurs des écarts types. Pour des durées inférieures à 300 ms, les modèles calculent à moins de 2 phones près en moyenne le niveau d'isosonie mesuré, comme pour les créneaux. Pour les très courtes durées, les créneaux et les impulsions sont très proches perceptivement. Au-delà de 300 ms, on entend clairement la décroissance des impulsions. Les sujets semblent alors se baser sur une pondération entre le maximum de sonie et une sonie moyenne alors que les indicateurs (Nmax, N5, Nimp) calculent essentiellement la sonie maximum.

Le tableau VIII-2 fournit les valeurs du MAR, du Rmax, du Rmean et Rstd pour les modèles

et l'estimateur de sonie d'impulsion (ESI).

Globalement, les indicateurs tels que le Nmax, le Nimp, le N5 ou le STLmax prédisent bien l'intégration temporelle (MAR de I ou 2 phones et Rmax = 5 phones).

Les résultats montrent que le niveau d'isosonie maximum (Zwicker 1999 (Nmax)) estime assez bien le niveau d'isosonie mesuré des stimuli que nous avons étudiés. La sonie maximum semble être un des principaux critères, sur lequel s'appuie l'auditeur pour juger la

sonie. Cependant, lorsque l'auditeur perçoit une décroissance, ce qui est le cas pour des impulsions de durée supérieure à 300 ms, son jugement ne s'appuie plus uniquement sur la sonie maximum mais semble être pondérée. On atteint ici la limite des indicateurs basés sur le maximum du niveau d'isosonie. Pour des durées plus longues (> I s), ces indicateurs se rapprochent du niveau d'isosonie mesuré.

L'estimateur de sonie d'impulsion que nous avons proposé donne un niveau d'isosonie avec un MAR de 6 phones. Notons que l'estimateur ESI a été construit pour des sons de durée très courte. Dans le domaine pour lequel il a été créé, il donne des niveaux d'isosonie proches de ceux mesurés (MAR=2 phones).

Nous allons calculer maintenant les niveaux d'isosonie sur les données expérimentales concernant l'intégration temporelle en fonction de la fréquence. Ainsi, dans ce qui suit, nous avons calculé les niveaux d'isosonie, obtenus par les différents modèles, de sons décrits au paragraphe VII-I.1. Les fréquences des sons étaient de 125 Hz, 350 Hz, I kHz, 3 kHz et 8 kHz. La durée des sons était comprise entre 10 et 500 ms pour les créneaux et entre 10 ms et 3 s

34

Figure VIII-18 : Niveaux d'isosonie calculés (Nmax, Nimp, ESI, N5 et STLmax) et mesurés (trait épais) d'impulsions de 125 Hz en fonction de leur durée.

et STLmax) et mesurés (trait épais) de créneaux de 350 Hz en fonction de leur durée.

pour les impulsions. Tous les sons avaient le même niveau crête de 72 dB SPL. Nous avons représenté sur les figures VIII-18 à VIII-27 les niveaux d'isosonie calculés et mesurés pour des créneaux et des impulsions de diverses durées et fréquences. Pour synthétiser les résultats que nous pouvons observer sur les figures ci-après, nous avons reporté, dans le tableau VIII-3, les valeurs du Mar, du Rmax, du Rmean et Rstd.

D'après les valeurs du tableau VIII-2, les écarts entre les niveaux d'isosonie calculée et mesurés, pour chaque fréquence, sont équivalents entre les créneaux et les impulsions. On observe tout de même que le N5 présente des écarts plus importants pour les impulsions (MAR moyen de 7 phones pour les impulsions et de 4 phones pour les créneaux). De plus, le N5 donne des écarts le plus souvent au-dessous du niveau d'isosonie mesuré (Rmean < 0) mais pas de manière systématique (Rstd \geq 2).

II ressort des figures VIII-18 à VIII-27 et du tableau VIII-2, que le Zwicker 1999 (Nmax et le Nimp), quel que soit le signal (créneau ou impulsion) et la fréquence, donnent en moyenne à moins de 2 phones près le niveau d'isosonie mesuré. L'écart maximum pour ces deux indicateurs est de 6 phones, ce qui reste largement acceptable compte tenu de la grande dispersion des données. Le Nmax et le Nimp, donnent en général (sauf pour les créneaux à 8 kHz) des niveaux d'isosonie inférieurs à ceux mesurés pour des sons dont les durées sont inférieures à 20 ms. Pour des sons de durées plus longues, ces deux indicateurs ont tendant à surestimer le niveau d'isosonie mesuré.

35

Globalement, le Nmax donne des écarts répartis uniformément autour du niveau d'isosonie mesuré (0 < Rmean < 1). Le Nimp, quant à lui, a tendance à donner des niveaux d'isosonie inférieurs à ceux mesurés (Rmean < 0) mais toujours pas de manière systématique (Rstd>2).

Le STLmax donne un niveau d'isosonie à moins de 2 phones près, par rapport à celui mesuré, uniquement pour les sons de 1 kHz. Le STLmax donne des niveaux d'isosonie d'autant plus éloignés de ceux mesurés, que la fréquence de la porteuse des sons brefs est plus éloignée de l kHz (voir figures VIII-18 à VIII-27 et tableau VIII-2) . En effet, pour les créneaux et les impulsions à des fréquences dont le seuil d'audition est supérieur à celui à l kHz (125 Hz, 350 Hz et 8 kHz), le STLmax donne un niveau d'isosonie le plus souvent au-dessous de celui mesuré (Rmean < 0), mais pas avec un biais systématique (Rstd \geq 2). Pour les fréquences dont le seuil d'audition est inférieur à celui de l kHz, le STLmax surestime le niveau d'isosonie mesuré.

On observe, à partir de ces résultats, que l'estimateur de sonie d'impulsion (ESI) donne un niveau d'isosonie en moyenne à moins de 4 phones de celui mesuré. Les écarts les plus grands entre le niveau d'isosonie calculé et mesuré sont obtenus pour des sons à basses et hautes fréquences (10 et 8 phones), de durée supérieure à I seconde pour les impulsions et à 200 ms pour les créneaux. Rappelons encore une fois que cet estimateur a été créé pour des sons de très courtes durées. Donc, dans le domaine d'application pour lequel il est prévu, il est aussi performant

que d'autres indicateurs tels que le Nmax et le Nimp sur ce type de sons. De plus, les valeurs du tableau VIII-2 permettent de montrer que l'estimateur ESI donne des niveaux soit au-dessous, soit audessus de ceux mesurés et ne comportent pas de biais systématique (Rstd \geq 2).

Globalement, nous constatons les limites de certains indicateurs, tels le N5 et le STLmax, pour calculer le niveau d'isosonie d'un son bref. Notons tout de même que ces indicateurs sont préconisés par les auteurs pour estimer le niveau d'isosonie de sons variant dans le temps. Il ressort aussi que le Nmax ou le Nimp sont de bons

36

indicateurs pour calculer le niveau d'isosonie de créneaux et d'impulsions dont les structures fines sont des sons purs (MAR = 2 phones). Les écarts maximum sont compris entre 4 et 6 phones. En ce qui concerne l'estimateur ESI, celui-ci donne d'aussi bons résultats (MAR = 3 et 4 phones) que le Nmax et le Nimp, pour ce type de sons brefs. Il est intéressant, à présent, de comparer les niveaux d'isosonie calculés et mesurés de signaux de synthèse plus complexes et de sons naturels.

VIII-2.3 Domaine d'application des modèles de sonie en fonction du type de sons

Notre objectif est à présent de tester les modèles de sonie et l'estimateur ESI sur des sons plus complexes que ceux étudiés jusqu'alors. Pour cela, nous avons repris les données expérimentales obtenues au chapitre V. Les sons testés ont été décrits au paragraphe V-2-1.1, il s'agissait de sons impulsionnels, de sons stationnaires et de trains d'impulsions, naturels et synthétiques. Nous avons donc choisi de comparer les données des modèles et de l'estimateur ESI aux niveaux d'isosonie mesurés par la méthode d'ajustement. On rappelle que quatorze auditeurs ont participé aux tests.

Les figures VIII-28, VIII-29 et VIII-30 représen-

Les Cahiers de l'Audition - Vol. 21 - n°5 - Septembre/Octobre 2008

nels mesurés et calculés par le modèle de Moore 2002 (STLmax), l'estimateur ESI et le modèle de Zwicker 1999 (Nimp, N5 et Nmax).

37

Créneaux	Imp	oulsions		
	N II			
Nmax Nimp N5 ESI STLmax MAR Nmax	Nimp	N5	ESI	STLmax
125 Hz I I 3 4 9 125 Hz 2	2	7	4	8
350 Hz 2 2 3 3 4 MAR 350 Hz I		7	4	5
I kHz 2 2 4 2 I I KHz 2	2	6	3	2
3 kHz 2 2 5 4 5 3 kHz 2	3	7	3	5
8 kHz 3 3 7 3 7 8 kHz 2	3	7	4	7
Moyenne 2 2 4 3 5 Moyenne 2	2	7	4	5
Rmax Nmax Nimp N5 ESI STLmax Rmax Nmax	Nimp	N5	ESI	STLmax
125 Hz 3 2 5 10 12 125 Hz 2	4	14	8	14
350 Hz 4 3 6 4 7 350 Hz 2	3	10	6	7
l kHz 4 5 9 5 3 l kHz 3	5	8	7	4
3 kHz 5 6 13 7 7 3 kHz 4	4	15	6	9
8 kHz 5 6 13 6 10 8 kHz 4	5	10	8	11
Max 5 6 13 10 12 Max 4	5	15	8	14
Rmean Nmax Nimp N5 ESI STLmax Rmean Nmax	Nimp	N5	ESI	STLmax
125 Hz 0 0 -3 4 -9 125 Hz 0	-1	-7	2	-8
350 Hz I 0 -3 0 -4 350 Hz 0	-1	-7	-2	-5
kHz 0 -4 kHz -	-2	-6	0	-1
3 kHz 0 -1 -5 -4 4 3 kHz 0	-1	-7	-2	5
8 kHz -2 -3 -7 3 -7 8 kHz -1	-2	-7	4	-7
Moyenne 0 -I -4 I -3 Moyenne -I	-1	-7		-3
Rstd Nmax Nimp N5 ESI STLmax Rstd Nmax	Nimp	N5	ESI	STLmax
125 Hz 2 2 2 3 3 1 125 Hz 2	2	3	5	3
350 Hz 2 2 3 3 2 350 Hz I	2	2	4	
I kHz 3 3 4 3 2 I kHz 2	2	2	4	2
3 kHz 3 3 5 2 3 3 kHz 3	3	4	3	4
8 kHz 3 3 4 2 3 8 kHz 2	2	2	3	2
Moyenne 3 3 4 3 3 Moyenne 2	2	3	4	2

Tableau VIII-2 : Récapitulatifs des indices proposés (définis au chapitre III) afin de pouvoir évaluer l'efficacité des modèles de sonie concernant l'intégration temporelle de créneaux et d'impulsions pour diverses fréquences. A gauche les indices concernant les créneaux et à droite les impulsions.

tent les niveaux d'isosonie mesurés et calculés respectivement pour des sons stationnaires, des sons impulsionnels et des trains d'impulsions. Nous avons relié les points expérimentaux par des segments pour une meilleure visibilité des différences entre les modèles. Les segments verticaux représentent les écarts types des mesures.

Le tableau VIII-3 récapitule les indices permettant de quantifier les écarts entre les niveaux d'isosonie calculés et mesurés en ce qui concerne les sons stationnaires. De manière générale, les modèles ont tendance à donner des niveaux d'isosonie inférieurs à ceux mesurés (Rmean < 0) à l'exception du modèle de Moore (1997) pour les sons stationnaires et pour qui les niveaux d'isosonie sont répartis uniformément autour de ceux mesurés (Rmean =0). On ne constate pas non plus de biais systématique (Rstd ≥ 2) sur l'ensemble des résultats. En ce qui concerne les sons stationnaires, le modèle de Zwicker (1958) sous-estime en moyenne de 5 phones le niveau d'isosonie mesuré. C'est le modèle de Moore (1997) qui donne les niveaux d'isosonie les plus proches de ceux mesurés pour les sons stationnaires (MAR = 2 phones et Rmax = 4 phones). Comme dans le chapitre III, on observe que le modèle de Zwicker (1958) donne des niveaux d'isosonie inférieurs à ceux donnés par le modèle de Moore (1997). Par contre, dans le chapitre III, le modèle de Zwicker (1958) donnait des niveaux d'isosonie plus proches de ceux mesurés que le modèle de Moore (1997). Les sons étudiés et le groupe d'auditeurs étaient différents de ceux de cette étude, ce qui peut expliquer cette légère différence dans la précision des modèles par rapport aux mesures.

Les modèles prévus pour les sons non stationnaires (Nmax et STLmax) donnent des écarts moyens, par rapport aux mesures du niveau d'isosonie mesuré, compris entre 4 et 6 phones et des écarts maximum de 10 à 14 phones. Pour les sons étudiés ici, non seulement ces modèles donnent des niveaux d'isosonie éloignés de ceux mesurés mais ils ne rejoignent pas non plus les niveaux d'isosonie calculés par les modèles prévus pour les sons stationnaires.

MAR	Stationnaire	Impulsionnel	Train d'impulsions	Moyenne
Zwicker 1958	5	•	•	5
Zwicker 1999 (Nmax)	6	4	8	6
Zwicker 1999 (Nimp)	6	5	8	6
Zwicker 1999 (N5)	6	4	8	6
Moore et Glasberg 1997	2			2
ESI		12		10,5
Glasberg et Moore 2002				
(STLmax)	4	7	8	6
Rmax	Stationnaire	Impulsionnel	Train d'impulsions	Maximum
Zwicker 1958		•	•	11
Zwicker 1999 (Nmax)	10	8	12	12
Zwicker 1999 (Nimp)	10	9	12	12
Zwicker 1999 (N5)	10	8	12	12
Moore et Glasberg 1997	4			4
ESI		16		16
Glasberg et Moore 2002				
(STLmax)	14	12	12	14
Rmean	Stationnaire	Impulsionnel	Train d'impulsions	Moyenne
Zwicker 1958	-5			-5
Zwicker 1999 (Nmax)	-6	-2	-6	
Zwicker 1999 (Nimp)	-6	-3	-7	
Zwicker 1999 (N5)	-6	-3	-7	-5
Moore et Glasberg 1997	0			0
ESI		-10		-9,5
Glasberg et Moore 2002				
(STLmax)	-3	-1	-4	-3
Rstd	Stationnaire	Impulsionnel	Train d'impulsions	Moyenne
Zwicker 1958	2			2
Zwicker 1999 (Nmax)	3	4	7	5
Zwicker 1999 (Nimp)	3	5	7	3
Zwicker 1999 (N5)	2	4	6	4
Moore 1997	2			3
ESI		8		6
Moore 2002(STLmax)	5	6	8	6

Tableau VIII-3 : Récapitulatifs des indices afin de pouvoir évaluer l'efficacité des modèles de sonie concernant des données sur des sons stationnaires, impulsionnels et des trains d'impulsions complexes.

Pour les sons impulsionnels, c'est le modèle de Zwicker 1999 qui donne les écarts les plus faibles par rapport aux niveaux d'isosonie mesurés (Mar = 4 phones et Rmax = 8 phones). Le modèle de Moore 2002 (STLmax) donne des niveaux d'isosonie inférieurs à ceux mesurés pour des niveaux d'isosonie faibles et supérieurs pour des niveaux d'isosonie élevés. L'estimateur ESI donne des niveaux d'isosonie toujours inférieurs à ceux mesurés. Il semble sousestimer d'avantage les niveaux d'isosonie mesurés pour des niveaux élevés. Ce résultat a aussi été observé lors de la comparaison des modèles sur les résultats des lignes isosoniques de sons impulsionnels. Il est important de souligner ici que l'estimateur ESI a été ajusté sur un nombre d'échantillons sonores limité, obtenus avec une méthode d'estimation directe. Nous avons vu dans le chapitre V, que cette méthode avait tendance à donner des niveaux d'isosonie inférieurs à ceux obtenus par la méthode d'ajustement. Ceci peut donc expliquer que l'estimateur ESI donne, pour ces données, des niveaux d'isosonie inférieurs à ceux mesurés par la méthode d'ajustement. Enfin, en ce qui concerne les trains d'impulsion, même si tous les modèles donnent des valeurs équivalentes, aucun ne donne des niveaux d'isosonie proches de ceux mesurés (MAR de l'ordre de 8 phones et Rmax de 12 phones). Pour notre corpus de sons (stationnaires, impulsionnels et trains d'impulsions), les modèles de Zwicker 1999 et de Moore 2002 donnent des niveaux d'isosonie équivalents avec un écart moyen de 6 phones et un écart maximum de l'ordre de 12 phones par rapport aux niveaux d'isosonie mesurés. Il est important de souligner les limites de tous les modèles concernant les trains d'impulsions avec des écarts moyens de l'ordre de 8 phones.

VIII-3 Conclusion

Ce chapitre est consacré à l'étude du domaine d'application et des limites des modèles de sonie et de l'estimateur de sonie d'impulsion (ESI) sur des données expérimentales de la littérature et acquises durant ce travail de thèse.

Une première limite a été mise en avant dans cette première partie concernant les modèles de Zwicker (1958) et de Zwicker et Fastl (1999). En effet, ces deux modèles, basés sur le même principe, considèrent une valeur de l'excitation identique au sein d'une même bande critique. Il n'y a donc pas d'effet de la fréquence sur le niveau d'isosonie de sons de même niveau de pression et de fréquences différentes comprises dans une même bande critique. On observe un tel palier lorsqu'on trace des lignes isosoniques, en particulier à basse fréquence (en-dessous de 100 Hz, pour le modèle de Zwicker (1958) et en-dessous de 50 Hz pour le modèle de Zwicker et Fastl (1999)). Ces deux modèles auront tendance à donner un niveau d'isosonie plus faible de celui mesuré pour des sons riches en basses fréquences (inférieures à 100 Hz).

Nous constatons, à travers cette étude, que les modèles de sonie de Zwicker (1958) et de Moore et coll. (1997), donnent pour des sons stationnaires des niveaux d'isosonie proches de ceux mesurés. Le modèle de Moore et coll. (1997) semble cependant plus précis en ce qui concerne des sons stationnaires complexes, en particulier ceux riches en basses fréquences.

Nous sommes allés plus loin dans l'étude des limites des modèles en comparant les niveaux d'isosonie calculés aux niveaux d'isosonie mesurés de sons impulsionnels de synthèse mais aussi de sons stationnaires, des trains d'impulsion et des sons impulsionnels naturels.

Tout d'abord, nous avons étudié les limites des modèles sur les lignes isosoniques de sons impulsionnels que nous avons établies. Tous les modèles prévus pour des sons non stationnaires (Nmax, Nimp, STLmax) prédisent à moins de 5 phones près le niveau d'isosonie mesuré. On peut tout de même observer que plus le niveau d'isosonie mesuré augmente, plus le niveau d'isosonie calculé est inférieur à ce dernier. Seul l'estimateur de sonie d'impulsion (ESI) présente une déficience pour des fréquences très éloignées de l kHz.

Nous avons ensuite comparé les calculs obtenus par les modèles aux mesures du niveau d'isosonie de créneaux et d'impulsions de 1 kHz dont les durées allaient de 10 millisecondes à 3 secondes. La limite des modèles se situe pour des impulsions de durée supérieures à 300 ms. Pour ces durées, les indicateurs utilisés (Nmax, Nimp, STLmax) donnent des valeurs supérieures aux niveaux d'isosonie mesurés de plus de 2 phones. Cela peut paraître faible comme différence, mais pour ce type de son, la dispersion des mesures est inférieure à 2 phones. L'estimateur de sonie d'impulsion ne prédit plus correctement le niveau d'isosonie pour des durées supérieures à 300 ms.

Nous avons, par la suite, étendu notre étude à des sons impulsionnels de durée et de fréquence différentes. Les durées variaient de quelques millisecondes à quelques centaines de millisecondes et les fréquence étaient comprises entre 125 Hz et 8 kHz. On a ainsi pu montrer les limites du STLmax et du N5. En effet, pour ces deux indicateurs, les écarts dépassent 4 phones. Les écarts sont d'autant plus élevés que les fréquences sont plus élevées pour le N5. Quant au STLmax, il prédit moins bien le niveau de sons impulsionnels de durée variable aux basses (125 Hz) et hautes fréquences (8 kHz).

L'estimateur de sonie d'impulsion (ESI) prédit assez bien les niveaux d'isosonie mesurés, à moins de 4 phones près en moyenne, de sons dont la durée est inférieure à 300 ms. Les écarts sont d'autant plus grands que les fréquences sont plus éloignées de I kHz et que la durée est supérieure à 300 ms pour les créneaux et à I s pour les impulsions.

Pour les sons impulsionnels que nous avons testés, il semble que le modèle le mieux adapté au calcul du niveau d'isosonie est le modèle de Zwicker et Fastl (1999). Plus précisément, ce sont les indicateurs Nmax et Nimp qui estiment en moyenne le mieux le niveau d'isosonie mesuré (MAR=4 phones). Par contre on notera que l'écart maximum (Rmax) est de l'ordre d'une dizaine de phones ce qui reste une valeur élevée pour estimer correctement le niveau d'isosonie de tout type de son. Il semble que ces indicateurs soient plus fiables sur des sons de synthèse (MAR=2 phones). En effet, sur les expériences comportant des sons réels de l'environnement (stationnaires, non stationnaires et impulsionnels) le MAR moyen s'élève à 7 phones.

Nous avons aussi montré les limites des modèles sur les trains d'impulsions. En effet, pour ce type de son, aucun modèle ne donne un niveau d'isosonie proche de celui mesuré.

Pour résumer, les indicateurs tels que le Nmax et le Nimp, issus du modèle de Zwicker et Fastl (1999), sont en moyenne les plus précis et les plus stables, avec tout de même un Rmax de 10 phones, pour calculer le niveau d'isosonie de sons stationnaires et impulsionnels.

Ce travail de recherche a permis d'étudier non seulement d'un point de vue scientifique la sonie de sons impulsionnels mais aussi, d'un point de vue de la métrologie, les modèles de sonie dans le but de permettre une meilleure utilisation de ceux-ci. Une de nos volontés, et une des difficultés et nouveautés, était de travailler avec des sons impulsionnels « naturels ». Nous nous sommes donc principalement intéressés non seulement à des sons impulsionnels de synthèse mais aussi à des sons impulsionnels de notre environnement sonore. La durée des sons était comprise entre quelques millisecondes et quelques centaines de millisecondes.

Notre démarche a été tout d'abord de synthétiser les données de la littérature concernant la sonie des sons impulsionnels et de montrer les limites des indicateurs actuels pour estimer la sonie de ce type de son (chapitres I, II et VI). Une autre étape de la thèse a été de déterminer la forme générale des sons impulsionnels « naturels » d'un point de vue physique. Un autre travail essentiel a été de concevoir un estimateur de sonie pour des sons impulsionnels (chapitre VII). Nous avons alors posé le problème de la méthode de mesure. L'objectif suivant était alors de déterminer la méthode de mesure de la sonie la mieux adaptée selon le type de sons (chapitre III). Pour avancer sur l'étude des modèles, nous avions besoin de données expérimentales sur le niveau d'isosonie d'impulsions décrites dans le chapitre VII. Nous avons alors étudié l'influence de la fréquence et de la durée sur la sonie des sons impulsionnels (chapitre IV et V). Enfin, la dernière partie de la thèse, plus appliquée, a été consacrée à la détermination des domaines d'applications et des limites des différents modèles et estimateur de sonie (chapitre VIII).

L'analyse bibliographique a montré que peu d'études avaient été réalisées sur la sonie des sons impulsionnels. Il en ressort cependant qu'elle dépend essentiellement du niveau, de la durée et du contenu spectral mais aussi de l'énergie et du temps de montée. Une des principales lacunes de ces travaux de recherche est le peu d'études sur des sons impulsionnels naturels. En effet, la plupart des auteurs ont étudié des signaux dont la forme temporelle était en créneaux. 39

Un autre point important que nous pouvons retenir de ces travaux est une grande disparité dans les résultats. Par exemple, la définition d'un son impulsionnel mais aussi l'influence de la fréquence sur la sonie ou encore la valeur de la durée critique sont encore sujets à études car il n'y a pas unanimité dans les résultats. Il semble que cette disparité soit en partie due aux différentes méthodes utilisées pour mesurer la sonie et à la différence des stimuli étudiés.

Nous avons ensuite étudié des signaux naturels que nous avons enregistrés. La grande différence que nous avons pu obser-

ver entre ces signaux et ceux de la littérature est l'absence de partie entretenue. En effet, tous les signaux impulsionnels présentaient un temps de montée rapide suivi immédiatement d'une décroissance plus ou moins lente dont la forme était de type exponentiel. Notre étude a donc été réalisée sur ce type de signaux, naturels et de synthèse. Nous avons donc réalisé une régression linéaire sur les valeurs logarithmiques des caractéristiques physiques et du niveau d'isosonie pour définir les meilleures corrélations. Ainsi, sur ce type de signaux, nous avons montré que la sonie (S) dépend essentiellement de l'énergie (E) comme pour les sons stationnaires (S=kE0,3).

Nous avons aussi montré qu'un autre paramètre intervient pour des sons de même énergie, c'est le temps de descente. L'influence du temps de descente est plus marquée pour des sons de niveaux peu élevés (niveaux crêtes inférieurs à 70 dB SPL) et pour des bandes de bruit. La relation entre la sonie et le temps est de la même forme qu'entre la sonie et l'énergie. En effet, Meunier et Rabau (2002) ont montré qu'une fonction puissance reliait le temps de descente à la sonie (S=KTd0,I). Ils ont aussi montré que ce coefficient diminue de moitié pour une augmentation du niveau de 15 dB.

Nous avons alors tenu compte dans notre estimateur de sonie pour les sons impulsionnels non seulement de l'énergie mais aussi du temps de descente. On obtient ainsi une très bonne corrélation entre la sonie calculée par notre estimateur et la sonie mesurée (R=0,89).

Un autre aspect essentiel de la thèse a été de déterminer la méthode de mesure du niveau d'isosonie la mieux adaptée selon le type de son étudié et en particulier pour les sons impulsionnels. Nous avons donc choisi d'étudier quatre méthodes de mesure de la sonie faisant partie des plus utilisées. Il s'agissait d'une méthode de mesure de la sonie, l'estimation directe sans référence, et de trois méthodes de mesure du niveau d'isosonie, la méthode d'ajustement, une méthode adaptative à choix forcé sur deux intervalles et une méthode adaptative à poursuites multiples. Ces méthodes ont été testées sur trois types de sons, des sons sta-

Les Cahiers de l'Audition - Vol. 21 - n°5 - Septembre/Octobre 2008

tionnaires, des sons impulsionnels et des trains d'impulsions.

La méthode d'ajustement présente le meilleur compromis entre durée du test et précision attendue. En effet, pour des écarts types équivalents cette méthode dure quatre fois moins longtemps que la méthode adaptative simple et à poursuites multiples. Les écarts types obtenus sont de l'ordre de 3 phones pour les sons stationnaires, 5 phones pour les sons impulsionnels et 4 phones pour les trains d'impulsions. Nous avons aussi déterminé la variabilité intra-individuelle qui est de 2 phones en moyenne.

Notons aussi que la méthode d'estimation directe est une méthode fiable qui permet de calculer rapidement le niveau d'isosonie d'un grand nombre de sons avec cependant une grande variabilité (6 phones en moyenne). Les méthodes adaptatives simple et à poursuites multiples ont aussi montré une bonne stabilité des résultats, avec par exemple des écarts types de l'ordre de 3 phones obtenus avec la méthode adaptative à poursuites multiples pour les trains d'impulsions. Mais les durées des tests sont très longues. En effet, ils durent 80 minutes pour dix sons. Un dernier résultat important est que toutes ces méthodes donnent globalement le même niveau d'isosonie même si on peut observer une sous-estimation systématique, mais pas toujours significative, du niveau d'isosonie obtenu avec la méthode d'estimation directe.

Par ailleurs, afin de mieux connaître l'influence de la fréquence sur la sonie, nous avons étudié les lignes isosoniques à 50, 60 et 75 phones de sons impulsionnels de 57 ms. Nous pouvons retenir de ce travail, que les lignes isosoniques ont des formes relativement similaires à celles des sons stationnaires mais le seuil est plus élevé pour les sons impulsionnels, d'environ 10 dB SPL. Une des principales différences se situe dans les basses fréquences. En effet, les lignes isosoniques de sons impulsionnels sont plates en dessous de 500 Hz alors que celles des sons stationnaires (norme ISO R 226, 2003) remontent.

Nous avons aussi étudié les fonctions de sonie de sons impulsionnels de l kHz et de durées différentes. Nous avons mis en avant

une discontinuité dans la fonction de sonie. Ce résultat est en accord avec ceux de Buus et coll. (1997) obtenus pour des sons brefs en créneaux. En effet, dans notre étude, la pente de la fonction de sonie pour des niveaux crêtes supérieurs à 68 dB SPL est de l'ordre de 0,3. Pour des niveaux crêtes inférieurs à 68 dB SPL la pente de la fonction de sonie est d'autant plus raide que la durée du son impulsionnel est plus courte (0,3 pour un temps de descente (Td) de 600 ms, 0,4 pour Td=200 ms, et 0,5 pour Td=20 ms). Nous avons aussi montré que les fonctions de sonie de sons impulsionnels étaient moins raides que celles de sons stationnaires.

En plus de la durée, nous avons étudié l'influence de la fréquence sur la fonction de sonie d'un son impulsionnel de 57 ms. Les porteuses étaient de 450 Hz, I kHz et 2,9 kHz. De la même manière que pour les sons purs de I kHz de différentes durées, les pentes des fonctions de sonie présentent une discontinuité. Nous n'avons cependant pas montré d'influence de la fréquence sur les pentes des fonctions de sonie de ces sons impulsionnels. Les pentes des fonctions de sonie sont de l'ordre de 0,6 pour des niveaux crêtes inférieurs à 68 dB SPL et de l'ordre de 0,4 pour des niveaux crêtes supérieurs à 68 dB SPL.

Nous avons ensuite étudié plus précisément l'influence de la durée sur la sonie de sons impulsionnels et de sons en créneaux d'amplitude constante. Pour des créneaux dont les durées sont comprises entre 10 ms et 500 ms et des impulsions de durées comprises entre 10 ms et 3 s, il n'y a pas d'influence significative de la fréquence sur la variation du niveau d'isosonie avec la durée.

Dans une deuxième expérience, nous avons montré que l'intégration temporelle de sons en créneaux peut être modélisée par une fonction exponentielle du type :

Lt = Lcomp + $10 \text{ Log}(1-e(-t/\tau))$

où Lt est le niveau que doit avoir le son de comparaison (son long de l s) pour avoir la même sonie que le son test (créneau d'intensité l(t)), t représente la durée du stimulus et τ la constante de temps. Lcomp est le niveau des créneaux dont la durée dépasse la durée critique. Cela nous a permis de déterminer, pour les créneaux, une durée

critique de l'ordre de 380 ms.

En ce qui concerne les impulsions que nous avons synthétisées, nous n'avons pas mis en évidence de durée critique. Nous avons cependant montré que l'intégration temporelle, pour des durées comprises entre 70 ms et 3 s, peut être modélisée par une fonction logarithmique de la durée :

Lt = k+ 10mLog(t)

où Lt est le niveau d'isosonie du son impulsionnel, t est la durée, k est une constante et m la pente de la fonction logarithmique.

L'apport de ce travail a aussi été d'établir, pour des sons impulsionnels de formes « naturelles » et de sons brefs en forme de créneaux, un grand nombre de données expérimentales de niveau d'isosonie. Ces données nous ont permis non seulement de pouvoir comparer les valeurs du niveau d'isosonie obtenu par les différents modèles (Zwicker 1958, Moore 1997, Zwicker 1999 et Moore 2002) et l'estimateur de sonie d'impulsion (ESI) que nous avons mis au point, mais aussi d'étudier leurs domaines d'application.

L'étude des domaines d'application et des limites des modèles et du nouvel estimateur de sonie d'impulsion (ESI) est un travail essentiel, d'un point de vue de la métrologie, pour permettre une meilleure utilisation de ceux-ci selon le type de son étudié.

Pour des sons stationnaires, les modèles de Zwicker (1958) et de Moore et coll. (1997) fournissent des niveaux d'isosonie proches de ceux mesurés. On constate toutefois que le modèle de Moore et coll. (1997) est plus précis que celui de Zwicker pour des sons basse et haute fréquences et pour des sons complexes. Le modèle de Glasberg et Moore (2002) est le seul à avoir été ajusté sur les lignes isosoniques modifiées (ISO 526, 2003). Il a cependant tendance à surestimer de plus de 4 phones le niveau d'isosonie mesuré pour des niveaux élevés de sons stationnaires à basse fréquence. En ce qui concerne les sons impulsionnels, le modèle de Glasberg et Moore (2002) donne de bons résultats pour des sons de I kHz. Les écarts par rapport aux niveaux d'isosonie mesurés sont d'autant plus grands que la fréquence du son impulsionnel est plus éloignée de l kHz et que les niveaux d'isosonie sont plus élevés. Pour

des sons impulsionnels complexes, ce modèle sous-estime les niveaux d'isosonie mesurés faibles et surestime les niveaux d'isosonie élevés.

Nous avons aussi montré que deux indicateurs calculés à partir du niveau d'isosonie en fonction du temps selon le modèle de Zwicker et Fastl (1999) donnent de bons résultats avec un MAR moyen de 4 phones. Ces indicateurs sont le niveau d'isosonie maximum (Nmax) et un indicateur que nous avons proposé, noté Nimp. Ces indicateurs semblent tout de même être mieux adaptés pour des sons non stationnaires de synthèse (MAR = 2 phones) que pour des sons non stationnaires naturels (MAR = 6phones). L'écart maximum avec les mesures obtenu avec ces indicateurs pour calculer le niveau d'isosonie peut être de 14 ou 15 phones pour les sons impulsionnels, ce qui reste une valeur élevée par rapport aux valeurs de la dispersion des mesures (de l'ordre de 4 phones). Notons tout de même que les écarts les plus importants sont ceux concernant les trains d'impulsions, sons pour lesquels aucun modèle ne donne un niveau d'isosonie proche de celui mesuré. Ces deux indicateurs permettent tout de même une première approximation rapide du niveau d'isosonie de sons stationnaires et impulsionnels.

Enfin, l'estimateur de sonie d'impulsion donne des niveaux d'isosonie proches de ceux mesurés pour des sons dont les durées sont inférieures à 300 ms pour des créneaux et à l s pour des impulsions. Il a cependant tendance, pour ces durées, à surestimer les niveaux d'isosonie de sons impulsionnels dont les fréquences sont élevées et à sous-estimer les niveaux d'isosonie élevés. Pour des sons plus complexes, on a vu que l'estimateur ESI, ajusté sur des données expérimentales obtenues avec une méthode d'estimation directe, sous-estime les niveaux d'isosonie obtenus avec la méthode d'ajustement.

Il est encore difficile de calculer systématiquement de manière précise le niveau d'isosonie global de sons non stationnaires et impulsionnels. Nous pensons que le modèle de Glasberg et Moore (2002), utilisant des ERB (Equivalent Rectangular Bandwidth) comme filtres auditifs au lieu de bandes critiques figées, semble mieux adapté au calcul du niveau d'isosonie de sons complexes. Nous avons montré que l'écart entre le niveau d'isosonie calculé et mesuré dépend du niveau des sons. Il serait donc peut être pertinent de tenir compte des différences de pente de la fonction de sonie en fonction du niveau. Enfin, il sera nécessaire de réaliser d'autres mesures du niveau d'isosonie de trains d'impulsions afin d'étudier plus précisément ce type de son.

Ce travail de thèse nous a donné un aperçu général de résultats concernant les lignes isosoniques et les fonctions de sonie de sons impulsionnels ainsi que l'intégration temporelle. Cependant, il manque certaines données pour affiner et confirmer nos conclusions. En effet, en ce qui concerne les lignes isosoniques de sons impulsionnels, il serait intéressant d'avoir plus de données pour des fréquences inférieures à 500 Hz et comprises entre I et 2 kHz pour pouvoir confirmer l'allure générale que nous avons obtenue. Ceci permettrait d'ajuster les modèles plus précisément pour les sons impulsionnels. Il serait ensuite intéressant d'établir les fonctions de sonie de sons impulsionnels sur plus de points expérimentaux et plus d'auditeurs pour confirmer la différence de pente entre des niveaux crêtes faibles et élevés. Comparer ces données à des créneaux brefs et des sons stationnaires permettrait aussi de vérifier que les faibles valeurs des pentes des fonctions de sonie ne sont pas dues au groupe d'auditeurs. Enfin, des données supplémentaires sur des impulsions de I kHz de durées inférieures à 100 ms permettraient de modéliser l'intégration temporelle de sonie pour des durées très courtes, ce que nous n'avons pu faire dans notre étude.

41

Ce travail de recherche a reçu le soutient du Ministère de l'Environnement et du Développement Durable pour continuer notre étude afin de développer dans un premier temps un estimateur stable de sonie de sons impulsionnels et dans un deuxième temps un estimateur de sonie de n'importe quel type de bruit. Nous prévoyons donc dans le cadre de ce projet de poursuivre nos recherches sur la sonie des sons impulsionnels d'un point de vue scientifique et industriel.

Berglund B., "Relationship between loudness and annoyance for ten community sounds", Environ. Int., 16, 523-531, 1990.

Blommer M., Otto N., Wakefield G., Feng B.J., Jones C., "Calculating the loudness of impulsive sounds", SAE Transactions, 1995.

Boone M. M., "Loudness measurements on pure tone and broad band impulsive sounds, Acustica 29, 198-204, 1973.

Boullet I. et Boussard P., "Pré-étude psychoacoustique sur les bruits de chantier", rapport final IB/RC/1087, ADEME, contrat n°00.04.102, 2001.

Buus, S, Florentine, M., and Poulsen, T., "Temporal integration of loudness, loudness dicrimination, and the form of the loudness function", J. Acoust. Soc. Am., 101, 669-680, 1997.

Canévet G., Cours de psychoacoustique, Marseille, LMA, 2001-2002.

Canévet G., Teghtsoonian R. et Teghtsoonian M., A comparison of loudness change in signals that continuously rise or fall in amplitude, Acustica/Acta Acustica, 89, 339-345, 2003.

Canévet, G., Hellman, R., and Scharf, B., "Group estimation of loudness in sound fields", Acustica 60, 277-282, 1986.

Canévet G., Germain R., Marchioni A. et Scharf B., "Adaptation de sonie", Acustica, 49, 239-244, 1981.

Cavé C. et Chocholle R., "Intégration temporelle auditive : effet du niveau sur la durée critique", Revue d'Acoustique, n°50, 178-179, 1979.

Chalupper J. et Fastl H., "Dynamic loudness model (DLM) for normal and hearing-impaired listeners", Acustica, 88, 378-386, 2002.

Chocholle R. et Saulnier Ch., "Les lignes isosoniques pour des sons de durée brève : 20 ms", Revue d'Acoustique, n°37, 93-97, 1976.

Cops A. et Myncke H., "Mesures subjectives et objectives du niveau de sonie des signaux sonores impulsifs : un projet de recherche international", Revue d'Acoustique n°37, 98 104, 1976.

Damongeot A., "Etude psycho-acoustique des bruits impulsifs d'hélicoptères", Revue d'Acoustique n° 48, 60-69, 1979.

Ekman G., Berglund B. et Berglund U., "Loudness as a function of the duration of auditory stimulation", Scan. J. Psy. 7, 201-208, 1966.

Fastl H. et al., "Contributions to Psychological Acoustics", Results of the Sixth Oldenburg Symposium on Psychological Acoustics, edited by August Schick, Bibliotheks- und Informations system der Universität Oldenburg, 1993.

Fastl H. et Schmid W., "Comparison of loudness analysis systems", In Proc. inter-noise'97 Vol.II 981-986, 1997

FastI H., "Evaluation and measurement of perceived average loudness", Fifth Oldenburg Symposium on Psychological Acoustics, Schick A., Hellbrück J. Et Weber R., BIS. Oldenburg, 205-216, 1991.

Fastl H., "The psychoacoustics of sound-quality evaluation", Acustica 83, 754-764, 1997.

Fletcher H. et Munson W.A., "Loudness, its definition, measurement and calculation", J. Acoust. Soc. Am., 5, 82-108, 1933.

Florentine M., Buus S. et Poulsen T., "Temporal integration of loudness as a function of level", J. Acoust. Soc. Am. 99 (3), 1633-1644, 1996.

Florentine M., Epstein M. et Buus S., "Loudness for long and short tones", Fechnerday, The Seventeenth Annual Meeting of the International Society for Psychophysics, 19-23 octobre, Leipzig, Allemagne, 2001.

Gabrielson A. et Sjögren H., "Perceived sound quality of sound-reproducing systems", J. Acoust. Soc. Am. 65 (4), 1019-1033, 1979.

Garner W.R., "The loudness and loudness matching of short tones", J.Acoust. Soc. Am., 21, 398-401, 1949.

Gelfand, S.A., Hearing, "An introduction to psychological and physiological acoustics", Third Edition, Marcel Dekker, Inc., USA, 1998.

Gerken G. M., Bhat Y. K. H. et Hutchinson-Clutter M, "Auditory temporal integration and the power function model", J. Acoust. Soc. Am. 88 (2), 767-778, 1990.

Gescheider, G.A., Psychophysics, Method, Theory, and Application, Second Edition, Lawrence Erlbaum Associates, New Jersey, USA, 1985.

Glasberg B. R. et Moore B. C. J., "A model of loudness applicable to time-varying sounds", J. Audio Eng. Soc., 50, n° 5, 331-342, 2002.

Green D. M., Birdsall T.G. et Tanner W.P. Jr., "Signal detection as a function of signal intensity and duration", J.Acoust. Soc. Am., 29, 523-531, 1957.

Gusky R., "Psychological Methods for evaluating sound quality and assessing acoustic information", Acustica, 83, 765-774, 1997.

Gustaffson B., "The loudness of transient sounds as a function of some physical parameters", J. Sound.Vib., 37(3), 389-398, 1974.

Hellman R.P. et Zwislocki J.J., "Some factors affecting the estimation of loudness", J. Acoust. Soc. Am., 33, 687-694, 1961.

Hellman R.P. et Zwislocki J.J., "Monaural loudness function at 1000 cps and interaural summation", J.Acoust. Soc. Am., 35, 856-865, 1963.

ISO 532 B , "Méthode de calcul du niveau d'isosonie", norme internationale, 1975.

ISO R 226, "Lignes isosoniques normales pour sons purs écoutés en champ libre et seuil d'audition binauriculaire en champ libre", 1961.

ISO 226, "Normal equal loudness level contours for pure tones under free-field listening conditions", 1987.

ISO 1996/1-1982 (F), "Acoustique - Caractérisation et mesurage du bruit de l'environnement - Partie I : Grandeurs et méthodes fondamentales", 1996.

ISO 226, "Normal equal loudness level contours", 2003.

Jestead, W., "An adaptative procedure for subjective judgements", Percept. Psychophys. 28, 85-88, 1980.

Kato T., Namba S. et Kuwano S, "A measurement of equal loudness contour of impulsive sounds by magnitude estimation", J. Acoust. Soc. Jpn. (J), 27, 21-32, 1993.

Kuwano S. et Namba S., "Continuous judgement of level-fluctuating sounds and the relationship between overall loudness and instantaneous loudness", Psychology Research, 47, 27-37, 1985.

Levitt H., "Transformed up-down procedures in psychoacoustics", J.Acoust. Soc.Am. 49, 467-477, 1971.

Lévy-Leboyer C., "12 ans de recherches sur la gêne due au bruit. Bilan des recherches françaises et étrangères 1976 1987", Institut de Recherches et d'Applications en Psychologie du Travail, rapport, 1988.

Liénard P., "Décibels et indices de bruits", Masson et Cie, 1974.

Marvit P., Florentine M. et Buus S., "A comparison of psychophysical procedures for level-discrimination thresholds", J. Acoust. Soc. Am. 113 (6), 3348-3361, 2003.

Masaoka K., Ono K. et Komiyama S., "A measurement of equal-loudness level contours for tone burst", Acoust. Sci. & Tech., 22(1), 35-39, 2001.

Mathias M., "La pratique de l'acoustique dans le bâtiment", Centre d'assistance technique et de documentation, Société de diffusion des tech-

niques du bâtiment et des travaux publics.

Meunier S. et Marchioni A., "Relations entre les caractéristiques physiques et les attributs subjectifs des signaux acoustiques", rapport final, Programme interdisciplinaire de recherche sur la ville, 1998.

Meunier S. et Rabau G., "How does the loudness of impulsive sounds depends on energy and duration", Proceedings of the Forum Acusticum Sevilla 2002, Séville, Espagne, 16-20 septembre 2002.

Miller G.A., "The perception of short bursts of noise", J.Acoust. Soc. Am., 20, 160-170, 1948.

Moore B. C. J. et Glasberg B. R., "Suggested formulae for calculating auditory-filter bandwidths and excitation patterns", J. Acoust. Soc. Am., 74, 750-753, 1983.

Moore B. C. J. et Glasberg B. R., "A revision of Zwicker's loudness model", Acustica, Vol. 82, 335-345, 1996.

Moore B. C. J., Glasberg B. R. et Baer T., "A model for the prediction of thresholds, loudness and partial loudness", J. Audio Eng. Soc, Vol.45, n°4, 224-240, 1997.

NF S31-010, "Caractérisation et mesurage des bruits de l'environnement", 1996.

Niese H., "Die Trägheit der Lautstärkebildung in Abhängigkeit vom Schallpegel", Hochfrequenztechnik und Elektroakustik 68, 143-152, 1959.

Ohta K., Kuwano S. et Namba S., "Sound quality of impulsive sounds in relation to their physical properties", Technoloy Reports Of The Osaka University, 49, n° 2360, 189-199, 1999.

Parizet E., Deumier S. et Milland E., "Car road noise annoyance : Significant timbre parameters and inter-individual variability", Acustica – acta acustica, 82, Suppl. 1, S 216, 1996.

Pedersen O. J., Lyregaard P. E. et Poulsen T. E., "The round robin test on evaluation of loudness level of impulsive noise", Acoustics Laboratory, Technical University of Denmark, Report n°22, 1977.

Plomp R. et Bouman M.A., "Relation between hearing threshold and duration for tones pulses", J. Acoust. Soc. Am., 31, 749-758, 1959.

Port E., "Über die Lautstärke einzelner kurzer Schallimpulse", Acustica, 13, 212-223, 1963.

Poulsen T. et Han L.A., "The binaural free field hearing threshold for pure tones from 125 Hz to 16 kHz", Acust. Acta Acust., 86, 333-337, 2000.

Reichardt W., "Zur Trägheit der Lautstärkebildung", Acustica, 15, 345-354, 1965.

Reichardt W., "Subjective and objective measurement of the loudness level of single and repea-

ted impulses", J. Acoust. Soc. Am., 47(6), part 2, 1557-1562, 1970.

Reichardt W. et Niese H., "Choice of sound duration and silent intervals for test and comparison signals in the subjective measurment of loudness level", J. Acoust. Soc. Am., 47, 1083-1090, 1970.

Robinson D.W. et Dadson R.S., "A re-determination of the equal-loudness relations for pure tones", Brit. J. Appl. Phys., 7, 166-181, 1956.

Ross R., Coles A., Garinther G.R., Hodge D.C. et Rice C.G., "Hazardous exposure to impulse noise", J. Acoust. Soc. Am., 43(2), 336-343, 1968.

Rumeau M., "Contribution à la caractérisation physique de bruits impulsionnels sur la base d'expertises effectuées par le laboratoire central de la préfecture de police", Thèse de 3ème Cycle, Université de Technologie de Compiègne, 1980.

Scharf B., "Loudness summation under masking", J. Acoust. Soc. Am., 33, 503-511, 1961.

Scharf B., "Loudness", in Handbook of perception, edited by E. C. Carterette and M. P. Friedman, Academic Press New York, 187-242, 1978.

Scharf B. et Buus S., "Stimulus, Physiology, Thresholds", in Handbook of perception and Human Performance Vol. I, edited by Boff K. R., Kaufman L. And Thomas J. P., Academic Press New York, 1986.

Scharf B. et Houtsma A. J. M., "Loudness", in Handbook of perception and Human Performance Vol. I, edited by Boff K. R., Kaufman L.And Thomas J. P., Academic Press New York, 1986.

Schlauch, R. S. et Wier, C.C., "A method for relating loudness matching and intensity-discrimination data", J. Speech Hear. Res. 30, 13-20, 1987.

Small A. M., Brandt J. F. et Cox. P. G., "Loudness as a function of signal duration", J. Acoust. Soc. Am. 34, 513-514, 1962.

Stephens S. D. G., "Methodological factors influencing loudness of short duration sounds", J. Sound Vib. 37(2), 235-246, 1974.

Stevens S.S., "The measurement of loudness", J. Acoust. Soc. Am., 27, 815-820, 1955.

Stevens S.S., "Calculation of the loudness of complex noise", J. Acoust. Soc. Am., 28, 807-832, 1956.

Stevens S.S., "The direct estimation of sensory magnitudes", Loudness, Am. J. Psychol., 69, 1-25, 1956.

Stevens S.S., "Concerning the form of the loudness function", J.Acoust. Soc. Am., 29, 603-606, 1957.

Susini P, "Perception évolutive et globale de sons non stationnaires", Thèse de doctorat de

l'Université du Maine, spécialité Acoustique, 1999.

Susini P. et McAdams S., "Psychophysical validation of a proprioceptive device by cross-modal matching of loudness", Acta Acustica, 86, 515-525, 2000.

Susini P., McAdams S. et Smith B. K., "Global and continuous loudness estimation of timevarying levels", Acustica/Acta Acustica, 88, 536-548, 2002.

Suzuki Y. et Takeshima H., "Equal-loudness-level contours for pure tones", J.Acoust. Soc.Am. 116 (2), 918-933, 2004.

Takeshima H., Susuki Y. et Kono S., "Growth of loudness of a tone burst with a duration up to 10 seconds", J. Acoust. Soc. Jpn. (E), 9, n° 6, 295-300, 1988.

Vigran E., Gjaevenes K. et Arnesen G., Two experiments concerning rise time and loudness, J.Acoust. Soc. Am., 36(8), 1468-1470, 1964.

Watson C. S. et Gengel R. W., Signal duration and signal frequency in relation to auditory sensitivity, J. Acoust. Soc. Am. 46 (4), 989-997, 1969.

Weber R., "The continuous loudness judgement of temporally variable sounds with an "analog" category procedure", in Proc. Of 5th Oldenburg Symp. On Psycholog. Ac., 267-294, 1991.

43

Zölzer U., "Digital audio signal processing", John Wiley et Son Ltd, 1997.

Zwicker E., "Übe psychologishe und methodishe grundlagen der lautheit, Acustica", Vol. 8, 237-258, 1958.

Zwicker E., "Procedure for calculating loudness of temporally variable sounds", J. Acoust. Soc. Am., Vol. 62, n°3, p 675-682, 1977.

Zwicker E., "Dependence of post-masking on masker duration and its relation to temporal effects in loudness", J. Acoust. Soc. Am., 75(1), p 219-223, 1984.

Zwicker E., Deuter K. et Peisl W., "Loudness meters based on ISO 532 B with large dynamic range", Inter'Noise 85, Proceedings 1985 International Conference on Noise Control Engineering, 1985.

Zwicker E. et Fastl H., "Psychoacoustics: Facts and models", 2nd Edition, Springer-Verlag, Berlin, 1999.

Zwicker E., Fastl H. et Dallmayr C., "BASICprogram for calculating the loudness of sounds from their 1/3-oct. band spectra acoording to ISO 532B", Acustica 55, 63-67, 1984.

Zwicker E. et Feldtkeller R., "Psychoacoustique", Masson, Paris, 1981.

ANNEXE 1 : VALORISATION DE LA THÈSE

Les travaux de cette thèse ont conduit GENESIS à implanter, dans le logiciel d'expertise acoustique LEA qu'elle développe, un module psychoacoustique incluant une première version de l'estimateur de sonie pour des sons impulsionnels.

Ce logiciel, destiné à l'analyse de signaux acoustiques et au design sonore industriel, dispose de fonctions classiques d'analyse temporelle et fréquentielle des signaux. Il propose de plus des fonctions innovantes d'analyse et de sculpture de représentations temps-fréquences qui ont été développées en collaboration avec le CNRS-LATP (Laboratoire d'analyse, topologie et probabilités). Comme le montre la figure Al-I, la conception s'appuie sur une collaboration représentée, pour le module psychoacoustique et dans le cadre de ma thèse, par le Laboratoire de Mécanique et d'Acoustique. La figure AI-2 donne un aperçu de l'intégration du module psychoacoustique dans LEA. On peut voir le calcul des décibels et des décibels pondérés, souvent considérés dans le monde industriel comme une première approximation de l'intensité perceptive d'un son. On distingue aussi la courbe de sonie en fonction du temps que l'implémentation du modèle de Zwicker et Fastl permet d'obtenir. On accède aussi aux attributs de la courbe de sonie en fonction du temps : N5, N10 et maximum. Enfin, une première version de notre algorithme d'estimation de la sonie d'un son impulsionnel est présente dans le module.

> ANNEXE 2 : PUBLICATIONS PERSONNELLES

Marozeau J., Boullet I., Meunier S., Gagneux F. et Boussard P., Evaluation d'estimateurs de sonie, Acoustique & Techniques n°39, p 27-34, 2005.

Boullet I., Marozeau J. et Meunier S., Temporal summation of loudness as a function of frequency and temporal pattern, 33rd International Congress and Exposition on noise control engineering (Internoise), Prague, République

A propos de LEA...

Figure AI-2 : aperçu du module psychoacoustique de LEA

Tchèque, 22-25 aout 2004.

Boullet I., Comparison between four methods of loudness estimation of stationary and nonstationary sounds, 7ème Congrès Français d'Acoustique (CFA) et 30ème Congrès de la Société Allemande d'Acoustique (DAGA), Strasbourg, France, 22-25 mars 2004.

Boullet I. et Rabau G., Gêne des bruits de chantier : approche psychoacoustique, 6ème Congrès Français d'Acoustique (CFA), Lille, France, 8-11 avril 2002.

Boussard P. et Boullet I., Simulation et perception des environnements sonores : comparaison des techniques de reproduction et influence de la sonie, Acoustique & Techniques n°26, p 26-29, 2001.

Meunier S., Boullet I. et Rabau G., Loudness of impulsive sound, actes du 17th International Congress on Acoustics (ICA), Rome, Italie, 2-7 septembre 2001.

Boullet I. et Boussard P., Etude d'expertise pour le calcul de descripteurs psychoacoustiques, rapport IB/RC/1294, , 01 dB, 2001.

Boullet I. et Boussard P., Etude psychoacoustique « caractérisation des nuisances de bruits de chantier », rapport final IB/RC/1087, ADEME, Ministère de l'Environnement, 2001.

FFPASSION

Vous avez aimé Passion 115 ? Vous allez adorer le reste de la gamme !

A chacun son PASSION

Pour chaque audition, chaque style et chaque budget.

A la pointe de la technologie depuis 1956, Widex crée et fabrique des aides auditives pour offrir une vie meilleure aux malentendants. 14/16 rue du Taille Fer - Z.A. Les Pouards - 91160 CHAMPLAN - Tél. 01.69.74.17.40 - contact@widex.fr - www.widex.fr

Abonnez-vous dès aujourd'hui !

À partir de 0,62 €

6 nos/an

La revue de tous les professionnels de l'audiologie. Sous l'égide du Collège National d'Audioprothèse.

Indexations:

Scopus

Que vous soyez audioprothésiste, médecin ORL, acousticien, physiologiste, orthophoniste ou psychologue, Les Cahiers de l'Audition vous offrent un moyen exceptionnel pour être informé des évolutions de votre spécialité.

Les Cahiers de l'Audition abordent tous les sujets importants comme l'acoustique, la psychoacoustique, l'audioprothèse, la physiologie et la pathologie de l'oreille, la psychologie et l'orthophonie.

Les Cahiers de l'Audition, c'est :

- un dossier thématique par numéro pour réactualiser vos connaissances;
- des articles courts sur l'actualité professionnelle, les formations, mais aussi des informations d'ordre économique et marketing ;
- des rubriques sur toutes les nouveautés (produits, matériels et équipements, livres...);
- un numéro spécifiquement dédié au Congrès annuel des Audioprothésistes.

Elsevier Masson a un compte bancaire en Belgique. Pour plus d'informations, merci de contacter notre Service Abonnements.
Ci-joint mon règlement d'un montant de : € πc
Par chèque bancaire ou postal à l'ordre de Elsevier Masson
Par carte bancaire : Visa Eurocard / Master Card
n° 🔄 🖂 🖂 🖂 🖂 🖂 🖂
Cryptogramme visuel (3 derniers n° au dos de votre CB) : n°
Date d'expiration :

Elsevier Masson SAS - Société par actions simplifiée au capital de 675.376 € - Siège social : 62 rue Camille-Desmoulins 92130 ISSYLES-MOULINEAUX - RCS Namerre B 542 037 031 - Locataire-gérant de Société d'Edition de l'Association défenciencement nent Médical des Hôpitaux de Paris

Merci de renvoyer cette autorisation de prélèvement en y joignant un relevé d'identité bancaire (RIB) ou postal (RIP) ou de compte d'épargne (RICE). Les montants des prélèvements indiqués ci-dessus sont valables pour une durée d'un an. Ils sont susceptibles d'être revus à la hausse au terme de chaque année d'abonnement. Sauf notification de votre part, votre abonnement sera reconduit

COMPTE À DÉBITER

n/compte TITIT

c/guichet

c/étab¹

T T T

Elsevier Masson SAS - 62 rue Camille-Desmoulins 92442 Issy-les-Moulineaux cedex RCS nanterre B 542 037 031

NOM ET ADRESSE DE L'ÉTABLISSEMENT TENEUR DU COMPTE À DÉRITER

UN ESTIMATEUR DE SONIE D'IMPULSION : ELABORATION ET VALIDATION

Résumé

L'originalité de cette étude est de s'intéresser à des sons impulsionnels possédant une attaque rapide immédiatement suivie d'une décroissance d'amplitude de forme exponentielle. Le choix d'un tel profil est basé sur l'observation de sons naturels que nous avons pu recenser dans notre environnement sonore. Les indicateurs présentés jusqu'alors ne permettent pas encore de calculer systématiquement de manière précise le niveau d'isosonie global de sons impulsionnels.

Un premier estimateur (ESI) a été proposé pour calculer la sonie à partir de caractéristiques physiques du signal telles que l'énergie et le temps de descente [1]. Nous avons ensuite procédé à des mesures psychoacoustiques de fonctions de sonie d'impulsions de sons purs, afin de tenir compte de l'influence de la fréquence porteuse sur la sonie. Ces données expérimentales ont contribué à déterminer un nouvel estimateur (noté ESIbc) qui améliore l'ESI. Nous avons alors entamé un processus de validation de ce nouvel estimateur ESIbc basé sur des mesures de sonie de sons impulsionnels de synthèse et « naturels ».

INTRODUCTION

Ce travail de recherche a été réalisé dans le cadre du programme « Bruit et nuisances sonores » financé par le Ministère de l'Environnement du Développement Durable. Il est la continuité de la thèse de Boullet [1] qui a permis de montrer, dans le cas de sons de durées courtes (< I s) que la sonie (S) dépend essentiellement de l'énergie (S=kE0,3 ; R=0,87). De plus, le temps de descente, proportionnel à la durée du signal, doit être pris en compte pour une meilleure estimation de la sonie. En effet, une étude réalisée par Meunier et Rabau [2] a montré, pour des sons impulsionnels, l'influence du temps de descente à énergie constante, sur la sonie.

De manière générale la sonie des sons impulsionnels dépend essentiellement de l'énergie mais aussi du temps de descente. Ainsi, à énergie constante, la sonie augmente quand le temps de descente du signal augmente.

Nous avons alors tenu compte dans notre estimateur ESI non seulement de l'énergie mais aussi du temps de descente.

47

I.1 Principe de l'estimateur de sonie d'impulsion modifié (ESIbc)

Le principe de l'estimateur de sonie d'impulsion modifié ESIbc est décrit ci-dessous et schématisé sur la figure 1.

Le signal acoustique est filtré pour obtenir un signal temporel dans chacune des bandes critiques. L'étape suivante du modèle est de calculer par bande l'énergie et le temps de descente. La sonie de cœur, basée sur l'estimateur de sonie d'impulsion initial (ESI), est ensuite calculée comme le produit de l'énergie, à l'exposant alpha, et de la durée d'extinction de l'impulsion, à l'exposant bêta. Enfin, la densité de sonie est intégrée sur les vingt-quatre bandes critiques pour prendre en compte le masquage fréquentiel de la même manière que Zwicker et FastI [3].

Isabelle Boullet¹, Fabrice Gagneux², Guy Rabau¹, Sabine Meunier¹ et Patrick Boussard²

¹ Laboratoire de Mécanique et d'Acoustique, 13402 Marseille, France, nom@lma.cnrs-mrs.fr

> ² GENESIS, 13545 Aix en Provence, France, prenom.nom@genesis.fr

48

L'exposant alpha est déterminé à partir du calcul de l'exposant de la fonction de sonie d'impulsions de sons purs dont les fréquences des porteuses correspondent aux fréquences centrales des bandes critiques. La mesure de ces fonctions de sonie est présentée dans le paragraphe suivant. L'exposant bêta, quant à lui, a été déterminé lors de recherches antérieures au projet ([1] et [2]).

I.2 Mesure des exposants de onze fonctions de sonie : α be

La mesure des exposants des onze fonc-

tions de sonie, pour plusieurs fréquences de porteuse, permet d'affiner l'estimateur de sonie d'impulsion (ESI) et de tenir compte de l'influence de la fréquence.

I.2.1 Stimuli

Les sons impulsionnels étudiés ont tous été

synthétisés. Leur enveloppe temporelle avait une attaque modélisée par une fonction linéaire croissante sur 5 ms, immédiatement suivie d'une décroissance (durée mise pour passer de 90 à 10 % de l'amplitude maximum) de 20 ms modélisée par une fonction exponentielle décroissante. Le signal était coupé à -60 dB du niveau crête. La porteuse était des sons purs de 250, 700, I 370, I 850, 2 500, 3400, 4800 et 10500 Hz. Chaque son, pour une fréquence donnée, était joué à 11 niveaux crêtes compris entre 50 et 100 dB SPL par pas de 5 dB. Le tableau I récapitule les caractéristiques physiques des signaux que nous avons étudiés.

I.2.2 Dispositif expérimental

Le signal numérique est converti en signal analogique grâce à une carte son Oros. Le signal est ensuite atténué par un atténuateur programmable Wilsonics (model PATT) avant d'être restitué par une enceinte amplifiée Génélec (type 1031A) située dans la salle anéchoïque du LMA. La mesure des niveaux est faite par un microphone Bruel & Kjaer (type 2669) situé à la place de la tête de l'auditeur en l'absence de celui-ci.

I.2.3- Auditeurs

Les tests ont été réalisés par dix-neuf auditeurs (dix femmes et neuf hommes) âgés de 20 à 45 ans. Dix d'entre eux n'avaient jamais passé de test d'estimation directe. Tous les sujets, soumis à un audiogramme de Békésy sous casque en salle anéchoïque, ne présentaient aucune déficience auditive.

I.2.4- Procédure

La mesure de la sonie a été faite par une méthode d'estimation directe sans référence. Dans ce test, les sons étaient répétés trois fois chacun et étaient présentés dans un ordre aléatoire, différent pour chaque auditeur. L'auditeur estimait la sonie de chaque son en donnant un nombre de son choix proportionnel à la sonie. Pour chaque auditeur et pour chaque son, on calcule la moyenne géométrique des trois estimations. Les données sont ensuite normalisées par rapport à une référence de sonie connue. La sonie d'un son est la moyenne géométrique des estimations normalisées de tous les auditeurs.

I.2.5- Résultats

Nous avons tracé sur la figure 2 les fonctions de sonie de sons impulsionnels de 20 ms dont les porteuses étaient 250, 450, 700, I 000, I 370, I 850, 2 500, 3 400, 4 800, 7 000 et 10 500 Hz.

Les fonctions de sonie peuvent être ajustées par une fonction puissance de la pression. Cela revient à écrire :

Sonie=c.10^(ICLNiveau/20) pour une relation entre la sonie et le niveau. Les valeurs des exposants α des onze fonctions de sonie sont reportées dans le nouvel estimateur de sonie d'impulsion (ESI_{bc}). Pour les fréquences centrales des bandes critiques non étudiées, les valeurs des exposants ont été interpolées à partir des valeurs mesurées. De plus, nous avons ajusté la constante k_{bc} sur ces données expérimentales afin de minimiser l'erreur moyenne entre la mesure et le calcul fait par l' ESI_{bc}.

Le but de cette étude est de commencer un processus de validation de l'ESIbc sur un grand nombre de stimuli afin de valider ce dernier. La première étape est de vérifier l'amélioration de l'ESIbc par rapport aux indicateurs que nous avions déjà proposés, tels que l'ESI ou le N30ms. Cette phase a été réalisée avec des sons impulsionnels de synthèse dont les paramètres physiques étaient contrôlés (voir tableau 2). La deuxième étape est de tester ce nouvel estimateur ESIbc avec une base d'échantillons sonores « naturels » (voir tableau 3). Pour cela, les données obtenues par l'ESIbc ont été comparées non seulement aux mesures mais aussi aux valeurs obtenues par les indicateurs disponibles sur le marché (STLmax, N5, N30ms et ESI).

II.1 Stimuli

Les sons impulsionnels de synthèse (définis de la même manière que dans 1.2.1) avaient une décroissance de 5, 40, 60, 80, 100, 200 et 600 ms. Les porteuses étaient des sons purs de 450 Hz, 1 kHz et 7 kHz. Chaque son était joué à onze niveaux crêtes compris entre 50 et 100 dB SPL par pas de 5 dB. Les tableaux 2 et 3 récapitulent les caractéristiques physiques des signaux que nous avons étudiés respectivement de synthèse et « naturels ».

II.2 Dispositif expérimental

Le dispositif était le même que celui décrit au paragraphe 1.2.2.

II.3 Auditeurs

En ce qui concerne la mesure de la sonie des signaux de synthèse, les tests ont été réalisés par dix-neuf auditeurs (dix femmes et neuf hommes) âgés de 20 à 45 ans.

Les tests concernant les signaux « naturels » ont été réalisés par vingt auditeurs (neuf femmes et onze hommes) âgés de 22 à 43 ans.

Tous les sujets, soumis à un audiogramme de Békésy sous casque en salle anéchoïque, ne présentaient aucune déficience auditive.

II.4 Procédure

La procédure expérimentale de mesure de la sonie est la même que celle décrite au paragraphe 1.2.4.

II.5 Résultats

II.5.1 Sons de synthèse

Les valeurs des indices permettant de juger de la précision des modèles (voir [4]) sont indiquées dans les tableaux 4, 5, 6 et 7. Il en

Nom	Temps de descente (ms)	Durée totale (ms)	Fréquence de la porteuse (Hz)	Niveaux crête (dB SPL)
I_5ms	5	25		
I_40ms	40	135		
I_60ms	60	198	450. 000	50, 55, 60, 65, 70, 75, 80, 85, 90, 95 et 100
I_80ms	80	261	et 10 500	
I_100ms	100	324		
I_200ms	200	638		
I_600ms	600	1896		

Tableau 2 : Tableau récapitulatif des descriptions et caractéristiques physiques des signaux de synthèse étudiés.

Nom des sons	Description	Durée (ms)	Niveau crête (dB SPL)
Son I	Agrafeuse	50	73,7
Son2	Clignotant	30	65,3
Son3	Clignotant	40	65
Son4	Clé de contact	50	71,2
Son5 N1	Fermeture centralisée	150	76
Son5 N2	Fermeture centralisée	150	66
Son5 N3	Fermeture centralisée	150	56
Son6	Frein à main (enlevé)	40	73
Son7	Frein à main (mis)	130	80,2
Son8	Guitare	1620	69,2
Son9	Interrupteur électrique	25	66,3
Son I 0	Avertisseur sonore	520	92,5
Sonll	Coup de maillet sur bois	315	88
Son I 2	Coup de maillet sur fer	530	78,7
Son I 3	Coup de marteau sur bois	215	72,5
Son I 4	Coup de marteau sur fer	450	86,8
Son I 5	Bruit de pas	125	67,2
Son I 6	Percussion en bois	170	87, I
Son I 7	Plaque de fer frappée	900	82,3
Son I 8	Fermeture de portière	200	86,3
Son 19	Ouverture de portière	250	82
Son20	Retrait clé de contact	100	80, I
Son21	Son21 Son « erreur » de Windows		89
Son22	Stylo bic à poussoir	10	72,4
Son23	Fermeture capuchon bic	5	68,7
Son24	Touche de clavier	80	60,8
Tableau 3 : Tableau récapitulatif des descriptions et caractéristiques physiques des signaux « naturels » étudiés			

Les Cahiers de l'Audition - Vol. 21 - n°5 - Septembre/Octobre 2008

ressort que l'ESI_{bc} permet d'estimer avec le plus de précision la sonie mesurée des 23 I sons de synthèse avec un MAR moyen (Ecart moyen) de 3 phones.

Le tableau 4 fournit les valeurs moyennes du MAR, du Rmax, du Rmean et Rstd pour le N30ms, indicateur calculé à partir du modèle de Zwicker et Fastl [3], de l'estimateur de sonie d'impulsion (ESI) et de l'estimateur de sonie d'impulsion modifié (ESIbc).

Le N30ms donne globalement des niveaux d'isosonie supérieurs à ceux mesurés (Rmean>0). De plus l'écart moyen (MAR) est en moyenne supérieur à 4 phones et présente une erreur maximum (Rmax) de l'ordre de 10 phones (voir tableau 4).

En ce qui concerne les sons impulsionnels de synthèse, et ce quelles que soient la fréquence et la durée, c'est l'ESIbe qui donne en moyenne les écarts les plus faibles par rapport aux niveaux d'isosonie mesurés (MAR moyen de l'ordre de 3 phones). La dispersion des mesures étant de l'ordre de 4 phones, l'ESI_{bc} est un estimateur précis de sonie pour ces sons impulsionnels. Il présente toutefois une erreur maximale importante (Rmax de l'ordre de 19 phones) pour les sons les plus courts (Td=5ms). L'ESIbc améliore considérablement l'ESI (MAR moyen > 5 phones) et possède une meilleure précision que le N30ms (MAR moyen > 4,5 phones). Il est donc intéressant de voir à présent ce que donne ce nouvel estimateur sur des sons de notre environnement sonore.

II.5.2 Sons « naturels »

Les résultats donnés par l'ESI_{bc} sont ici comparés aux valeurs calculés par le modèle de Zwicker et Fastl (N5 et N30ms), le modèle de Glasberg et Moore 2002 (STLmax, [5]) et de l'estimateur ESI sur des sons « naturels ». La figure 3 représente les niveaux d'isosonie mesurés et calculés. Nous avons relié les points expérimentaux par des segments pour une meilleure visibilité des différences entre les modèles.

51

Le tableau 5 récapitule les indices permettant de quantifier les écarts entre les niveaux d'isosonie calculés et mesurés en ce qui concerne les sons impulsionnels « naturels ».

De la même manière que pour les sons de synthèse, l'ESIbc donne les écarts les plus faibles (MAR inférieur à 4 phones) et améliore considérablement l'ESI (MAR de l'ordre de 6 phones).

Ce travail de recherche a permis d'étudier la sonie de sons impulsionnels ainsi que les modèles de sonie dans le but de permettre une meilleure utilisation de ceux-ci. Nous nous sommes principalement intéressés à des sons impulsionnels de synthèse mais aussi à des sons impulsionnels de notre environnement sonore. La durée des sons était comprise entre quelques millisecondes et quelques centaines de millisecondes.

Nous avons établi onze fonctions de sonie afin de construire l'ESIbc en tenant compte de l'influence de la fréquence. Cette étude a aussi permis d'établir d'autres données expérimentales afin de commencer un processus de validation complété par des mesures de sonie de sons impulsionnels « naturels ».

Ainsi, nous pouvons conclure que sur plus de deux cent cinquante sons impulsionnels, l'ESIbc permet d'estimer le niveau d'isosonie rapidement et avec une erreur moyenne (MAR moyen de l'ordre de 3 phones) inférieure à la dispersion des mesures (Ecart type de l'ordre de 4 phones).

Il sera intéressant de poursuivre cette validation sur un plus grand nombre de sons à caractère impulsionnel afin de définir précisément le domaine d'application de l'ESIbc, nouvel estimateur de sonie d'impulsion.

450 Hz	N30ms	ESI	ESIbc
MAR	4,21	3,42	2,78
Rmean	-1,10	I,46	-0,71
Rmax	10,58	19,17	I 3,60
Rstd	4,09	3,71	2,66
I 000 Hz	N30ms	ESI	ESIbc
MAR	4,93	5,60	2,66
Rmean	2,77	5,53	2,53
Rmax	10,18	18,88	18,97
Rstd	4,80	3,67	2,23
7 000 Hz	N30ms	ESI	ESIbc
MAR	4,90	8,00	3,66
Rmean	4,66	9,04	0,93
Rmax	9,28	17,86	I 3,84
Rstd	2,59	2,24	4,17

Tableau 4 : Récapitulatifs des indices afin de pouvoir évaluer de la précision quant à l'efficacité du N30ms, de l'ESI et de l'ESI pour estimer la sonie mesurée de sons impulsionnels de synthèse. Les valeurs reportées dans le tableau sont des moyennes sur toutes les durées étudiées.

	STLMax	N5	N30ms	ES lbc	ESI
MAR	9	10,7	5,25	3,90	6,10
Rmean	8,8	-10,7	4,70	3,00	-3,70
Rmax	12,6	22,8	10,00	10,50	10,50
Rstd	2,5	6	2,70	2,50	2,70

Tableau 5 : Récapitulatifs des indices afin de pouvoir évaluer de la précision quant à l'efficacité du STLmax, N5, N30ms, de l'ESIbc et de l'ESI pour estimer la sonie mesurée de sons impulsionnels « naturels ».

[1] Boullet I., La sonie des sons impulsionnels : Perception, Mesures et Modèles, Thèse de doctorat de l'Université Aix Marseille II, spécialité Mécanique, option Acoustique, 2005.

[2] Meunier S. et Rabau G., How does the loudness of impulsive sounds depends on energy and duration, Forum Acusticum Sevilla, Séville, Espagne, 2002.

[3] Zwicker E. et Fastl H., Psychoacoustics:

Facts and models, 2nd Edition, Springer-Verlag, Berlin, 1999.

[4] Marozeau J., Boullet I., Meunier S., Gagneux F.et Boussard P., Evaluation d'estimateurs de sonie, Acoustique & Techniques n°39 (2005), 27-34.

[5] Glasberg B. R. et Moore B. C. J., A model of loudness applicable to time-varying sounds, J. Audio Eng. Soc. 50 n°5 (2002), 331-342.

VEILLE TECHNOLOGIQUE

LE RITE POWER EST DÉSORMAIS DISPONIBLE POUR LES GAMMES EPOQ, VIGO PRO ET VIGO

Oticon lance aujourd'hui Epoq RITE Power (XW,W et V), Vigo Pro RITE Power et Vigo RITE Power, cinq nouvelles solutions auditives qui offrent aux personnes atteintes de perte auditive sévère les bénéfices d'une meilleure amplification dans des gammes discrètes et élégantes. Les nouvelles aides auditives se basent sur la plate-forme ultrarapide RISE, avec une bande passante plus large (8 kHz) et des niveaux de puissance de traitement significativement plus élevés. Grâce à l'association de caractéristiques encore plus haut de gamme, d'une meilleure qualité sonore, d'un choix de styles plus discrets et élégants, ainsi que d'un processus d'adaptation direct et facile, Epog RITE Power, Vigo Pro RITE Power et Vigo RITE Power établissent une nouvelle norme dans le domaine de la puissance.

« Le fait d'introduire les versions RITE Power accroît significativement la plage d'adaptation des gammes Epoq, Vigo Pro et

Vigo, » déclare Christophe Aubert, Directeur Commercial Oticon. « Avec une puissance maximale de 132 dB et la capacité d'atteindre des pertes auditives allant jusqu'à 100 dB, les gammes Epoq, Vigo Pro et Vigo peuvent à présent s'adapter à 8 malentendants sur 10. »

Epoq RITE Power « se connecte » sans fil

Avec les nouveaux Epoq XW RITE Power, Epoq W RITE Power et Epoq V RITE Power, les personnes atteintes de perte auditive sévère jusqu'à 100 dB peuvent profiter de la même connectivité sans fil avancée que celle des versions Epoq.

Il suffit d'appuyer sur un bouton pour que les nouvelles versions RITE Power coordonnent sans fil le volume et le changement de programme dans deux aides auditives Epoq, établissant automatiquement une base pour une image sonore plus équilibrée permettant une expérience sonore encore plus naturelle. La qualité sonore, la localisation et la compréhension du discours sont également améliorées avec la bande passante plus large de 8 kHz de la nouvelle aide auditive.

Si l'on rajoute le Streamer, les versions Epoq RITE Power se connectent sans fil à des dispositifs de divertissement et de

Contact :

Aurélie Cordier - Zambeaux Communication et Marketing 01 41 88 01 59 ac@prodition.fr

CREDITS PHOTOS OTICON

communication équipés Bluetooth, y compris téléphones portables et fixes, radios, lecteurs MP3, ordinateurs personnels, ordinateurs portables et télévisions. Les sons sont transmis par le Streamer pour un son pur sans distorsion, ni retard.

Valeur ajoutée de Vigo Pro RITE Power et Vigo RITE Power

Pour les utilisateurs expérimentés recherchant des améliorations significatives par rapport à leurs aides auditives actuelles, mais qui recherchent également une vraie valeur ajoutée, il existe deux nouvelles solutions puissantes. Vigo Pro RITE Power et Vigo RITE Power offrent aux clients soucieux de leurs économies une combinaison attractive de design, taille, performance, capacités de manipulation et valeur. Avec un traitement des signaux plus avancé pour une meilleure compréhension de la parole et un meilleur confort d'écoute, Vigo Pro RITE Power et Vigo RITE Power offrent aux utilisateurs même expérimentés (ayant une perte allant jusqu'à 100 dB) une période d'adaptation plus rapide, moins de réglages manuels et une manipulation plus facile.

Le système de Gestion Tri-Mode du bruit de Vigo RITE Power utilise la technologie de détection de la voix « VoiceFinder » afin de détecter et de donner la priorité au dialogue avec une grande précision, même dans un environnement bruyant. En outre, Vigo Pro RITE possède la fonction VC Learning (mémoire du potentiomètre) automatique qui « se souvient » des préférences de volume de l'utilisateur dans différents environnements sonores et s'ajuste automatiquement aux situations spécifiques.

Toutes les cinq plus légères, les versions élégantes du RITE Power fonctionnent avec des piles standard 312 et sont disponibles avec le nouveau dôme Power à adaptation instantanée ou l'embout Power personnalisé - ainsi que dans les couleurs des différentes gammes.

SIEMENS

Contact : Nadège OUIDRANE Tél. : 01 49 33 25 96 nadege.ouidrane@siemens.com

* Bentler R, Stiles D, Kirby B, "Impact of Digital Noise Reduction on Pediatric Performance" (« Impact de la réduction de bruit sur les performances de l'appareillage pédiatrique »). Présenté au NHS 2008, Como, Italie. Ching, TYC, Dillon H, O'Brien AO, Hartley L, Hartley D, Racevich G, "Does directional microphone technology in hearing aids benefit young children in real life?" (« La directivité microphonique des aides auditi-

ves profite t-elle aux enfants dans la vie de tous

les jours »). Présenté au NHS 2008, Como, Italie.

Siemens présente Explorer™

De la naissance à l'adolescence : Siemens présente Explorer™, solution auditive pour enfants.

Les bébés ont besoin de tous leurs sens pour découvrir et faire l'expérience du monde. L'audition est non seulement indispensable pour l'acquisition de la parole et du langage, mais a aussi une influence déterminante sur le développement mental, social et émotionnel. Explorer répond aux besoins très spécifiques des enfants. Au design et aux caractéristiques développés pour les accompagner à l'école, à la maison, au sport et en plein air, Explorer s'adapte à leur personnalité. Ils peuvent personnaliser Explorer selon leurs goûts et leurs envies. Les adolescents peuvent activer la fonction Bluetooth pour communiquer, écouter leur iPod, regarder la télévision...

L'appareillage pédiatrique est un art dans le monde de l'audiologie. Les bébés ne peuvent guère exprimer ce qu'ils ressentent pendant l'adaptation. Leur perception des sons est différente de celle des adolescents. De plus, comme l'oreille grandit, la partie se trouvant à l'intérieur du conduit auditif doit pouvoir être facilement changée par l'audioprothésiste. Et surtout, l'appareil doit être confortable, efficace, souple et robuste.

S'inspirant des résultats d'études internationales^{*} sur l'audiologie pédiatrique, Siemens a réussi, pour la première fois dans l'histoire de la correction auditive, à concevoir une aide auditive qui réponde aux besoins des enfants durant les différentes phases de leur développement.

D'abord le boîtier

Grâce au traitement de surface nanoProtect, le boîtier est protégé contre les projections d'eau et l'humidité. Une sécurité au niveau du tiroir pile évite l'ouverture accidentelle de celui-ci. Ainsi, les petits ne risquent pas d'avaler la pile. Les adultes peuvent, quant à eux, facilement l'ouvrir à l'aide d'un tournevis. Le coude est solidement fixé et ne peut être retiré par les enfants, tandis que l'audioprothésiste peut aisément le remplacer.

Une fois scolarisés, les enfants pourront ajuster eux-mêmes les réglages de leur appareil en fonction de leurs besoins (volume, programme). Enfin, Explorer est si robuste qu'il ne risque rien en cas de chute.

Explorer est doté de fonctionnalités innovantes de dernière génération. Bien qu'il soit très petit pour s'adapter confortablement derrière l'oreille des enfants, il délivre une puissance élevée : jusqu'à 85 dB de gain. Dans le même temps, la bande de fréquence est plus large. En effet, les études révèlent qu'une large bande favorise davantage la compréhension des mots et par conséquent le développement du langage.

Pour l'école, Explorer peut être relié à un adaptateur radio (type système FM) qui transmet la voix de l'enseignant directement dans les aides auditives.

La détection automatique de l'environnement, le traitement de la parole et du bruit, la directivité microphonique, l'anti Larsen et toutes les caractéristiques spécialement dédiées aux besoins des enfants leur permettent, même en cas de pertes sévères, de vivre normalement en participant à toutes les activités.

Pour dédramatiser l'appareillage et accélérer son acceptation, Explorer existe en 16 coloris différents. Il est également accompagné d'une quarantaine d'autocollants pour personnaliser ses appareils.

Compatibilité Bluetooth

Pour le plus grand plaisir des adolescents, Explorer est compatible avec la connectivité Tek, développée par Siemens. La télécommande Tek relie, sans fil, les aides auditives aux téléphones fixes et téléphones portables Bluetooth. Ainsi, quand le portable sonne, l'aide auditive le signale automatiquement. A l'aide de sa télécommande, le jeune peut prendre l'appel et bavarder sans porter le téléphone à son oreille puisque le son est transmis directement dans les aides auditives. Cette fonction apporte aux adolescents une nouvelle dimension de confort et d'indépendance. Le son de l'ordinateur, du lecteur MP3, de la télévision, ..., converti en signal Bluetooth, arrive aussi directement dans les aides auditives. En appareillage binaural (des deux oreilles), les appareils Explorer font ainsi office de casque stéréo sur mesure.

Explorer est disponible depuis septembre 2008. Effectuée par l'audioprothésiste, l'adaptation peut être réalisée avec ClinicalFit, la nouvelle interface de programmation sans fil.

> SIEMENS PRÉSENTE LE 1^{er} APPAREIL AUDITIF RECHARGEABLE COMPATIBLE **TV**

Nouvelle famille complète de contours d'oreille rechargeables et intra-auriculaires haut de gamme compatibles Bluetooth.

Dans un contexte international de développement de solutions personnalisées, Siemens a lancé les aides auditives Motion lors du 53^{ème} congrès EUHA à Leipzig. Cette nouvelle famille propose le plus large choix de modèles différents, en contours d'oreille et intra-auriculaires. Grâce à une multitude de fonctionnalités et de nombreuses couleurs, Motion répond précisément aux demandes de chaque utilisateur. La famille Motion évoluera encore dans les prochains mois avec de nouveaux modèles à venir. Avec Motion, vous êtes sûrs de pouvoir proposer à vos patients une solution véritablement personnalisée qui réponde à leurs critères esthétiques et techniques.

« Il n'existe pas deux pertes auditives identiques. Le type, le niveau de la déficience et les fréquences affectées sont différents pour chaque cas. De la même manière, les attentes des utilisateurs sont uniques », explique Dr. Stefan Schaller, Président de Siemens Audiologie Monde. « Une personne préfèrera un contour d'oreille, une autre un intra-auriculaire. Les fonctionnalités et les options proposées sur les nouveaux modèles offrent à l'utilisateur un large choix tant en performance qu'en prix. »

Motion se décline en contours d'oreille et en intra-auriculaires, à des niveaux de puissance et de prix différents.

Pour assurer un maximum de confort d'utilisation, les contours d'oreille Motion sont **rechargeables**. L'utilisateur n'a plus à se soucier des contraintes de piles vides, à remplacer.

Les boîtiers traités **nanoProtect** sont protégés contre l'humidité et la saleté. L'anti Larsen **FeedbackBlocker**, le réducteur de bruit, le **Traitement de la Parole et du Bruit** et d'autres fonctions sont des qualités standard de Motion.

Tous les appareils Motion sont compatibles avec la télécommande **Tek**, développée par Siemens. Les aides auditives communiquent, sans fil, avec les téléphones **Bluetooth**, la télévision, la radio. Les aides auditives informent automatiquement l'utilisateur dès que le téléphone sonne. Il peut répondre en appuyant sur la télécommande et bavarder sans tenir le téléphone. Tek Transmitter convertit en signal Bluetooth le son de la télévision, des lecteurs MP3, des ordinateurs... Le son arrive directement dans les aides auditives, **en stéréo et en temps réel**. Avec Tek, les utilisateurs découvrent une nouvelle dimension de confort.

Motion est équipé, selon modèles, des dernières innovations technologiques qui rendent son utilisation très confortable :

e2e sans fil 2.0 et TruEar. e2e 2.0 améliore la reconnaissance des sons venant de droite et gauche et synchronise les informations des deux côtés pour un équilibre binaural permanent. TruEar identifie les sons venant de l'avant et de l'arrière. La localisation spatiale est ainsi optimisée et l'écoute plus naturelle.

SoundSmoothing, développé par Siemens, réduit les bruits impulsionnels gênants (tintement de couverts, claquement de portes) en maintenant la qualité de la parole intacte.

SoundBrilliance accroît la perception des hautes fréquences, pour un son plus riche.

Motion, grâce à **DataLearning**, enregistre le volume préféré de l'utilisateur et l'ajuste automatiquement en fonction des différentes situations. SoundLearning, sur Motion 700, va encore plus loin en adaptant ses préférences de qualité sonore.

Télécommandes ePen et ProPocket. ePen, en forme de stylo, et ProPocket permettent de contrôler en toute discrétion les principales fonctions de l'aide auditive.

Motion est disponible depuis le 15 octobre 2008.

SIEMENS LANCE UNE NOUVELLE SOLUTION AUDI-TIVE DISCRÈTE ET CONFORTABLE

Elégant, discret, innovant - Nouvelles couleurs modernes et raffinées

Siemens a lancé les nouvelles aides auditives Siemens Life lors du 53^{eme} congrès EUHA à Leipzig. Siemens Life a été développé pour tous ceux qui

recherchent une solution auditive discrète et moderne, spécialement les nouveaux utilisateurs. Plus petit et plus léger que les contours d'oreille habituels, Life est le produit de l'instant fit. Avec son tube fin, il représente la solution idéale pour les patients qui n'acceptent ni les intras, ni les RIC (ou RITE). Proposé en de nouvelles couleurs, Life conviendra à tous les goûts. Equipé des dernières innovations technologiques et compatible Tek, Life communique en permanence avec l'environnement high tech du patient, qui peut ainsi recevoir le son de la télévision, de son téléphone Bluetooth, de la radio et autres appareils directement dans ses aides auditives.

« Aujourd'hui, les aides auditives sont naturellement plus portées qu'auparavant. Néanmoins, les nouveaux utilisateurs, notamment, souhaitent une solution confortable qui ne donne pas l'impression d'oreille bouchée et qui soit en même temps très esthétique », explique Dr. Stefan Schaller, Président de Siemens Audiologie Monde. Siemens a créé le nouveau Life spécialement pour ces personnes. Life est si petit qu'il disparaît derrière l'oreille. Et si quelqu'un venait à le remarquer, il serait impressionné par son apparence moderne et miniaturisée, vraiment très loin des gros appareils beiges traditionnels.

Life existe en 16 couleurs et motifs exclusifs, qui conviennent à toutes les teintes de peau et de cheveux. Le boîtier est facilement interchangeable et permet **plus de 100 configurations différentes**. En plus de ses qualités esthétiques incomparables, Life est équipé des dernières innovations technologiques qui simplifient considérablement son utilisation. Doté d'une forme d'Intelligence Artificielle, Life, grâce à **DataLearning**, enregistre le volume préféré de l'utilisateur et l'ajuste automatiquement en fonction des différentes situations. **SoundLearning**, sur Life 700, va encore plus loin en adaptant ses préférences de qualité sonore.

Life assure une écoute naturelle grâce aux technologies e2e sans fil 2.0 et TruEar. e2e 2.0 améliore la reconnaissance des sons venant de droite et gauche et synchronise les informations des deux côtés pour un équilibre binaural permanent. TruEar identifie les sons venant de l'avant et de l'arrière. La localisation spatiale est ainsi optimisée et l'écoute plus naturelle. Life dispose de fonctions de traitement de signal évoluées qui garantissent un confort remarquable dans toutes les situations : Traitement de la Parole et du Bruit, SoundSmoothing, FeedbackBlocker, directivité microphonique, ... Pour une utilisation encore plus simple, Life fonctionne avec les télécommandes ePen et ProPocket. ePen, en forme de stylo, et ProPocket permettent de contrôler en toute discrétion les principales fonctions de l'aide auditive.

Life est compatible avec la télécommande **Tek**, développée par Siemens. Les aides auditives communiquent, sans fil, avec les téléphones **Bluetooth**, la télévision, la radio. Les aides auditives informent automatiquement l'utilisateur dès que le téléphone sonne. Il peut répondre en appuyant sur la télécommande et bavarder sans tenir le téléphone. Tek Transmitter convertit en signal Bluetooth le son de la télévision, des lecteurs MP3, des ordinateurs... Le son arrive directement dans les aides auditives, **en stéréo et en temps réel**.Avec Tek, les utilisateurs découvrent une nouvelle dimension de confort.

Life est disponible depuis le 15 octobre 2008. Il est proposé en différents niveaux de puissance et gammes de prix.

56

Contact :

Pauline Croizat, Contact presse +33 (0)4 26 23 22 03 pauline.croizat@unitronhearing.com

Unitron Hearing présente 360+

Un appareil auditif surpuissant intégrant des caractéristiques très évoluées conçues spécifiquement pour des pertes auditives sévères à profondes

15 octobre 2008 - Unitron Hearing annonce le lancement de 360+, un appareil auditif numérique sophistiqué conçu spécifiquement pour les pertes auditives sévères à profondes. 360+ est le premier appareil auditif surpuissant conçu pour permettre aux utilisateurs d'obtenir toute la puissance requise en bénéficiant de caractéristiques évoluées, d'une excellente qualité sonore et d'une grande fiabilité adaptée à la vie quotidienne. Positionné en catégorie cœur de gamme, 360+ intègre des innovations supérieures conçues pour la performance, même dans les environnements sonores les plus exigeants.

Une plus grande puissance utilisable sans effet Larsen

La puissance de 360+ convient aux pertes auditives allant jusqu'à 120 dB, avec un niveau de sortie max. de 144 dB SPL et un gain max. de 86 dB SPL (simulateur d'oreille). Le système de gestion de l'effet Larsen permet de détecter et d'éliminer l'effet Larsen plus rapidement tout en procurant une amplification optimale et une écoute véritablement confortable.

Des caractéristiques évoluées conçues pour des pertes auditives sévères à profondes

Equipé de technologies dont l'efficacité a été prouvée pour d'autres degrés de pertes auditives, 360+ intègre de nombreuses caractéristiques évoluées conçues spécifiquement pour les pertes auditives sévères à profondes. 360+ intègre la fonction d'amélioration de la parole SP, une technologie adaptative conçue pour détecter les signaux de parole et leur appliquer à un gain allant jusqu'à 8 dB lorsque cela est nécessaire. Les technologies intégrées assu-

rent une meilleure clarté des signaux de parole et une grande facilité d'écoute grâce à une classification sophistiquée de la parole et du bruit ambiant. La fonction d'amélioration de la parole SP s'applique sur une plage plus large de niveaux d'entrée et choisit son application soit sur bande large, soit sur bande étroite.

360+ bénéficie d'autoPro2, un programme automatique intégrant deux destinations sonores distinctes. 360+ se caractérise par des fonctionnalités de confort : antiShock (réducteur de bruits impulsionnels), extracteur de graves, réduction du bruit.

Conçu pour le monde réel

Fiable et robuste, 360+ a été conçu et testé pour résister aux environnements les plus exigeants et pour s'adapter à tous les styles de vie des utilisateurs et à tous les âges. Testé en laboratoire dans des conditions rigoureuses, 360+ a fait preuve d'une performance constante après avoir été exposé à divers tests situationnels : transpiration, humidité, chaleur, poussières, débris. Les tests ont également mis en valeur la robustesse de 360+ avec une grande résistance à l'usure et aux impacts.

« Les personnes concernées par une perte auditive sévère à profonde exigent de leur appareil auditif un niveau maximum en termes de qualité, de durabilité, et de performances», explique Cameron Hay, président et directeur général de Unitron Hearing. « 360+ procure à ses utilisateurs des avantages essentiels : une fonction d'amélioration de la parole optimisée pour les pertes auditives sévères à profondes et un anti Larsen sophistiqué délivrant plus de puissance utilisable. Ses caractéristiques évoluées et sa conception ultra résistante garantissent aux utilisateurs de 360+ un fonctionnement fiable et confortable au quotidien et dans les environnements les plus exigeants. »

360+ compte de nombreuses options destinées à faciliter la vie quotidienne des utilisateurs d'appareils auditifs surpuissants avec, notamment, la télécommande Smart Control qui permet d'effectuer discrètement différents réglages.

Elégant, moderne, discret, Life est un micro contour d'oreille design. Il délivre une puissance remarquable en adaptation ouverte. Equipé de la puce numérique de 6^{ème} génération, il dispose des dernières innovations technologiques en termes de traitement de signal et de confort d'écoute. Compatible Bluetooth[®], Life permet de recevoir, par l'intermédiaire de la télécommande Tek, la musique, le téléphone, le son de la télévision en temps réel et en stéréo directement dans les aides auditives. Disponible en 16 couleurs, Life offre des centaines de combinaisons possibles. **www.siemens-audiologie.com**

Pourquoi pas vous?

* Des réponses pour la vie.

L'adaptation optimale pour chaque patient

Collection CORE

La Collection CORE est un ensemble unique de familles d'aides auditives qui répond aux besoins de tous vos patients – quels que soient leurs pertes auditives, leurs styles de vie ou leurs budgets. Avec la technologie inégalée et la simplicité d'emploi des produits de la Collection CORE, vous dépasserez toutes leurs attentes. www.phonak.com

